Развертка (выкройка) конуса

Круглый конус в геометрии

Приведем геометрическое определение этой фигуры. Круглым конусом называется поверхность, которая образована прямыми отрезками, соединяющими все точки некоторой окружности с одной-единственной точкой пространства. Эта единственная точка не должна принадлежать плоскости, в которой лежит окружность. Если вместо окружности взять круг, то указанный способ также приводит к получению конуса.

Вам будет интересно:Юридический колледж в Иваново: специальности, приемная комиссия, отзывы

Круг называется основанием фигуры, его окружность — это директриса. Отрезки, соединяющие точку с директрисой, называются генератрисами или образующими, а точка, где они пересекаются — это вершина конуса.

Круглый конус может быть прямым и наклонным. Обе фигуры показаны ниже на рисунке.

Разница между ними заключается в следующем: если перпендикуляр из вершины конуса падает точно в центр окружности, то конус будет прямым. Для него перпендикуляр, который называется высотой фигуры, является частью его оси. В случае конуса наклонного высота и ось образуют некоторый острый угол.

Ввиду простоты и симметричности фигуры далее будем рассматривать свойства только прямого конуса с круглым основанием.

Обозначение конусности на чертеже

При создании технической документации должны учитываться все установленные стандарты, так как в противном случае она не может быть использована в дальнейшем

Рассматривая обозначение конусности на чертежах следует уделить внимание следующим моментам:

  1. Отображается диаметр большого основания. Рассматриваемая фигура образуется телом вращения, которому свойственен диаметральный показатель. В случае конуса их может быть несколько, а изменение показателя происходит плавно, не ступенчато. Как правило, у подобной фигуры есть больший диаметр, а также промежуточной в случае наличия ступени.
  2. Наносится диаметр меньшего основания. Меньшее основание отвечает за образование требуемого угла.
  3. Рассчитывается длина конуса. Расстояние между меньшим и большим основанием является показателем длины.
  4. На основании построенного изображения определяется угол. Как правило, для этого проводятся соответствующие расчеты. В случае определения размера по нанесенному изображению при применении специального измерительного прибора существенно снижается точность. Второй метод применяется в случае создания чертежа для производства неответственных деталей.

Простейшее обозначение конусности предусматривает также отображения дополнительных размеров, к примеру, справочную. В некоторых случаях применяется знак конусности, который позволяет сразу понят о разности диаметров.

Выделяют достаточно большое количество различных стандартов, которые касаются обозначения конусности. К особенностям отнесем следующее:

  1. Угол может указываться в градусах дробью или в процентах. Выбор проводится в зависимости от области применения чертежа. Примером можно назвать то, что в машиностроительной области указывается значение градуса.
  2. В машиностроительной области в особую группу выделяют понятие нормальной конусности. Она варьирует в определенном диапазоне, может составлять 30, 45, 60, 75, 90, 120°. Подобные показатели свойственны большинству изделий, которые применяются при сборке различных механизмов. При этом выдержать подобные значения намного проще при применении токарного оборудования. Однако, при необходимости могут выдерживаться и неточные углы, все зависит от конкретного случая.
  3. При начертании основных размеров применяется чертежный шрифт. Он характеризуется довольно большим количеством особенностей, которые должны учитываться. Для правильного отображения используется табличная информация.
  4. Для начала указывается значок конусности от которого отводится стрелка и отображается величина. Особенности отображения во многом зависит от того, какой чертеж. В некоторых случаях наносится большое количество различных размеров, что существенно усложняет нанесение конусности. Именно поэтому предусмотрена возможность использования нескольких различных методов отображения подобной информации.

На чертеже рассматриваемый показатель обозначается в виде треугольника. При этом требуется цифровое значение, которое может рассчитываться при применении различных формул.

Развертки конических поверхностей в программе AutoCAD

УДК 515.2:681.3

Н.Ю. Смекаева, Е.В. Шамрай-Лемешко, Дальрыбвтуз, Владивосток

РАЗВЕРТКИ КОНИЧЕСКИХ ПОВЕРХНОСТЕЙ В ПРОГРАММЕ Д^оСДй

Описано построение разверток некоторых конических поверхностей. Такие поверхности встречаются при изготовлении вентиляционных систем, бункеров, водосточных труб. Чертежи разверток выполнены в современном исполнении — программе АиіоСАй.

быть определен по формуле

Боковой разверткой конуса вращения (рис. 1) является сектор

окружности, радиус которой равен образующей конуса, а угол может

2п-г _ г а =——= 360 • — .

( е

£ — длина образующей конуса, г — радиус окружности основания конуса

На практике целесообразно иметь значение угла не в радианах, а в градусах, поэтому в формуле вместо значения 2ж часто указывают 360 °.

Рис. 1

Развертка боковой поверхности конуса вращения с отверстием На рис. 2 изображено пересечение конуса с цилиндром. Обе поверхности являются поверхностями вращения. Оси их пересекаются под прямым углом. Поэтому линия пересечения на фронтальной проекции совпадает с проекцией основания цилиндра. Фронтальная

проекция имеет ось симметрии, поэтому выполняют половину боковой поверхности. Полную развертку получают командой ЗЕРКАЛО.

Построение чертежа выполняют в следующей последовательности:

1. Построена половина поверхности развертки как сектор с углом

а/2 = (360° Я) : ^команда РАЗМЕРЫ УГЛОВЫЕ

Длина образующей ^ определена командой РАЗМЕРЫ.

2. На фронтальной проекции проведены образующие А, В, С и й.

Образующая В — проведена касательной к проекции линии

пересечения, образующая С — делит дугу ВДО пополам.

3. Точки линии пересечения обозначены 1, 2, 3, 4 и 5.

4. На развертке отложим хорды, заменяющие дуги ВС и Сй (команды КОПИРУЙ, ПЕРЕНЕСИ) и проведем образующие командой отрезок.

5. Расстояние от вершины конуса до точек линии пересечения определены методом вращения образующих вокруг оси конуса и перенесены на образующие развертки.

6. Полученные точки соединены плавной кривой командой СПЛАЙН.

7. Полный контур развертки боковой поверхности с отверстием получен командой ЗЕРкАлО.

Рис. 2

Построение разверток усеченного конуса

Конические переходы с одного диаметра на другой (воронки) встречаются в устройстве водосточных труб и во многих других изделиях из тонколистовой стали (бидонах, лейках и пр.). Если при этом угол конуса не имеет особого значения, то его величину можно выбирать 29°, 60° или 97°. В этом случае развертки имеют очень простую форму — 1/4°, 1/2° и 3/4° круга. Примеры представлены на рис. 3.

Рис. 3

Построение приближенной развертки боковой поверхности усеченного конуса

В некоторых случаях разметчику бывает невозможно отложить угол сектора на заготовке. В таком случае развертку выполняют приближенно. Для этого в конус вписывают правильную пирамиду и строят ее точную развертку. Окружность основания аппроксимируют (заменяют) вписанной ломаной линией. На горизонтальную плоскость Пі она проецируется в натуральную величину, так как лежит в горизонтальной плоскости уровня. Соединив точки 1, 2, 3 и 4 ломаной линии с вершиной конуса, получим пирамиду, аппроксимирующую поверхность конуса.

Построение такой развертки показано на рис. 4. Так как конус имеет фронтальную плоскость симметрии, выполняют половину развертки. Полную развертку получаем командой ЗЕРКАЛО.

1

Рис. 4

Все ребра пирамиды имеют равную длину — Б1.

Дальнейшее построение сводится к построению треугольников Б12, Б23 и Б34 по трем сторонам. Отрезки БД бВ, БС и БО показывают, на сколько каждое ребро срезано фронтальной плоскостью. Их величины определены способом вращения вокруг проецирующей оси /.

Точки А, В, С и О, а также точки 1, 2, 3 и 4 соединены плавной кривой (команда СПЛАЙН).

Построенная половина развертки пирамидальной поверхности является половиной точной развертки конической поверхности.

Полная приближенная боковая развертка усеченного конуса построена командой ЗЕРКАЛО.

Библиографический список

1. Иванов Г.С. Начертательная геометрия. М.: Машиностроение, 1995. 208 с.

2. Смекаева Н.Ю. Развертки поверхностей. Владивосток: Дальрыбвтуз, 2001. 28 с.

3. Смекаева Н.Ю. Развертки поверхностей в программе AutoCAD. Владивосток: Дальрыбвтуз, 2007. 30 с.

Колпак на дымоход своими руками – конструкция и чертежи

Через дымоход на улицу выходит смесь газов с продуктами сгорания топлива из каминов, печей и отопительных котлов. Рассматривая частные дома, можно заметить, что оголовок трубы венчает специальный козырек или зонтик.

С первого взгляда на эти приспособления, украшенные фигурной ковкой, затейливыми узорами и фигурками, складывается впечатление, что они всего лишь элемент декора. На самом деле колпак на дымоход является важным элементом системы дымоудаления, правильность конструкции и монтажа которого отражается на эффективности ее работы.

Эта статья расскажет о принципах работы, видах и способах самостоятельного изготовления дефлекторов своими руками.

Для чего используется конус

Мы подробно разобрали самые простые варианты как сделать правильный конус из бумаги. Для чего используется эта поделка? Направления у нее самые различные:

  • геометрических выставок;
  • объемных поделок;
  • изготовления маскарадных шляп.

Ваша фантазия подскажет вам, где еще может применяться конус. А мы поможем вам вдохновиться с помощью простой конусной поделки елочки.

Ёлка из конуса

Для нее потребуется:

  • картон;
  • бумага для подарков;
  • скотч;
  • декоративные предметы;
  • ножницы.

В основе изделия, как вы уже поняли, лежит конус. Изготовьте его по одной из предложенных выше инструкций.

Далее работаем по схеме:

  1. Полученный конус, оборачиваем бумагой для подарков. Крепим кончик материала к верхушке скотчем и аккуратно оборачиваем бумагу по фигуре. Отрезаем лишний материал.
  2. Крепим концы с помощью скотча.
  3. Вы не поверите, но елочка готова. Осталось ее украсить как настоящую. С этой целью могут подойти пуговицы, большие бусины и миниатюрные новогодние игрушки.

В ёлке можно сделать отверстия. И если она достаточно широка, поместите внутрь конуса новогодние огоньки. В темноте, они будут приятно мелькать, создавая приятную атмосферу.

https://ngeometry.ru/postroenie-razvertki-konusa.htmlhttps://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-razmerov-razvertki-konusa.htmlhttps://megamaster.info/kak-sdelat-konus-iz-bumagi/

Техника папье-маше

Этот раздел также научит, как сделать конус из бумаги для елки

Большой или маленький вам нужен размер, в данном случае неважно. Заготовка получается прочной и твердой даже без дополнительного каркаса. Этот вариант подойдет тем, у кого нет единого плотного листа для изготовления конуса соответствующего размера

Этот вариант подойдет тем, у кого нет единого плотного листа для изготовления конуса соответствующего размера.

Для работы этим методом подойдет любая бумага, даже газетная или от старых журналов, однако, потребуется основа-заготовка. Можно воспользоваться пластиковым конусом от детского конструктора (исходная деталь не испортится и вернется на место), пластилином, гипсом, пенопластом. По одному шаблону вы сможете сделать много заготовок из папье-маше. Действуйте так:

  1. Нарежьте или нарвите газеты на мелкие элементы.
  2. Оберните подготовленный шаблон полиэтиленовой пленкой и обмажьте ПВА.
  3. На невысохший клей нанесите слой бумажных кусочков.
  4. Просушите первый слой и после нанесите второй по той же технологии.
  5. Работайте так до необходимой толщины заготовки.
  6. Разрежьте получившийся панцирь и извлеките исходную деталь.
  7. Установите стержень-каркас, если нужно.
  8. Нанесите еще несколько слоев для скрепления половинок.

Все готово.

Вы узнали, как сделать конус из бумаги для елки. Начинайте с изготовления основы, а затем приступайте к ее декорированию.

Для новогоднего оформления квартиры очень хорошо подходят маленькие ёлочки из подручных материалов. Один из главных плюсов таких ёлочек – простота изготовления и широкое поле для фантазии при их украшении. Кроме того, таких ёлочек можно сделать сразу много – разных по виду и украшению и расставить по всей квартире, таким образом, оригинально украсив её. Проще всего сделать ёлочку-конус из бумаги. На специализированных сайтах есть множество идей украшения таких ёлок, к которым Вы всегда сможете добавить свою авторскую выдумку. При всём разнообразии моделей, основа у всех ёлочек одна – конус из бумаги или картона.

Формула площади поверхности усеченного кругового конуса

Для усеченного кругового конуса площадь боковой поверхности можно найти по формуле:

S бок = π ⋅ l ⋅ ( r + r ′ ) S_{\text{бок}}=\pi\cdot l\cdot (r+r’) Sбок​=π⋅l⋅(r+r′)

l l l — длина образующей конуса; r r r — радиус основания; r ′ r’ r′ — радиус круга, получаемый при усечении кругового конуса.

Пример

Условие возьмем из предыдущей задачи, добавив к нему только лишь радиус второго основания r ′ r’ r′. Пусть он будет равен 2 (см.). Требуется вычислить полную площадь поверхности этого усеченного конуса.

Решение

l = 5 l=5 l=5 r = 3 r=3 r=3 r ′ = 2 r’=2 r′=2

Оснований у нас теперь два, поэтому полная площадь оснований будет равна сумме площадей этих оснований с радиусами r r r и r ′ r’ r′:

S осн = S осн r + S осн r’ S_{\text{осн}}=S_{\text{осн r}}+S_{\text{осн r’}} Sосн​=Sосн r​+Sосн r’​

Площадь основания радиуса r r r:

S осн r = π ⋅ r 2 = π ⋅ 3 2 ≈ 28.26 S_{\text{осн r}}=\pi\cdot r^2=\pi\cdot 3^2\approx28.26 Sосн r​=π⋅r2=π⋅32≈28.26 (см. кв.)

Площадь основания радиуса r ′ r’ r′:

S осн r’ = π ⋅ r ′ 2 = π ⋅ 2 2 ≈ 12.56 S_{\text{осн r’}}=\pi\cdot r’^2=\pi\cdot 2^2\approx12.56 Sосн r’​=π⋅r′2=π⋅22≈12.56 (см. кв.)

Площадь боковой поверхности:

S бок = π ⋅ l ⋅ ( r + r ′ ) = π ⋅ 5 ⋅ ( 3 + 2 ) ≈ 78.50 S_{\text{бок}}=\pi\cdot l\cdot (r+r’)=\pi\cdot 5\cdot (3+2)\approx78.50 Sбок​=π⋅l⋅(r+r′)=π⋅5⋅(3+2)≈78.50 (см. кв.)

Полная площадь:

S = S осн + S бок = S осн r + S осн r’ + S бок ≈ 28.26 + 12.56 + 78.50 = 119 , 32 S=S_{\text{осн}}+S_{\text{бок}}=S_{\text{осн r}}+S_{\text{осн r’}}+S_{\text{бок}}\approx28.26+12.56+78.50=119,32 S=Sосн​+Sбок​=Sосн r​+Sосн r’​+Sбок​≈28.26+12.56+78.50=119,32 (см. кв.)

Ответ: 119,32 см. кв.

Не знаете, как решить задачу по геометрии? Наши эксперты оперативно помогут вам с решением!

Развертка на примере усеченного конуса

Развертку конуса можно получить автоматически используя приложение Оборудование: Развертки, либо построить конус листовым телом и развернуть его. Рассмотрим оба способа.

Построение развертки усеченного конуса, выполненного листовым телом

  1. Создадим эскиз на плоскости XY (кликнуть левой кнопкой мыши на плоскость XY и выбрать из всплывающего меню команду «Создать эскиз»);
  2. Построим в эскизе окружность произвольного диаметра с центром в начале координат
  3. Выйдем из эскиза кликнув по индикатору режима и создадим смещенную от XY плоскость. Расстояние выберем любое.Команда»Смещенная плоскость»размещена на инструментальной панели «Вспомогательные объекты» (размещение команды показано на рисунке). После вызова команды необходимо кликнуть по плоскости XY и задать расстояние на Панели параметров, после чего подтвердить создание плоскости командой «Создать объект»
  4. Создаем на смещенной плоскости эскиз, в эскизе выполняем построение окружности произвольного диаметра с привязкой центра к началу координат (аналогично пунктам 1-2). Выходим из эскиза кликнув левой кнопкой мыши по индикатору режима. В итоге деталь должна иметь следующий вид:
  5. Строим усеченный конус командой «Линейчатая обечайка», которая расположена на панели «Элементы листового тела» в наборе «Листовое моделирование».Запустив команду указываем Эскиз1 и Эскиз2, можно указать их в дереве, можно просто кликнуть по окружностям в окне модели. Также требуется задать толщину стенки усеченного конуса на Панели параметров. Для подтверждения создания тела нажимаем кнопку «Создать объект»
  6. Усеченный конус построен, теперь необходимо выполнить его развертку. Для этого воспользуемся командой «Развернуть» с Панели быстрого доступа. После вызова команды кликнем по конической грани и нажмем «Создать объект» . Перейти от развертки к усеченному конусу можно отжав режим развертка
  7. Остается перенести данную развертку с 3D в чертеж. Для этого создаем новый документ чертеж. Заходим по пути: Главное текстовое меню — Вставка — Вид с модели — Вид с модели…Указать деталь с разверткой (обязательно файл с деталью сохранить, иначе он не появится в списке). Поставить на Панели параметров галочку «Развертка». В результате будет построен вид с разверткой.

Построение развертки усеченного конуса с помощью приложения

Приложение Оборудование: Развертки позволяет построить развертку деталей имеющих форму:

  • усеченного цилиндра;
  • прямого кругового конуса;
  • усеченного прямого кругового конуса;
  • кругового конуса, усеченного не параллельно основанию;
  • наклонного кругового конуса, усеченного параллельно основанию;
  • тройников;
  • перехода с прямоугольного сечения на круглое;
  • труб прямоугольного и многоугольного сечения;
  • отводов.

Строить развертки поверхностей, имеющих форму типа:

  • цилиндра;
  • конуса;
  • тора;
  • сферы.

Приложение Оборудование: Развертки входит в Машиностроительную конфигурацию КОМПАС и приобретается отдельно от базового КОМПАС. Если Машиностроительная конфигурация на Вашем компьютере установлена, требуется подключить Приложение. Для этого нужно зайти по пути: Главное текстовое меню — Приложения — Конфигуратор — раскрыть в списке раздел Оборудование — выделить строку Оборудование:Развертки и нажать на ссылку «Подключить»

После подключения Приложение появится в наборе инструментальных панелей. Нужно будет выбрать панель Оборудование: Развертки и на панели выбрать тип объекта, развертку которого мы хотим получить.

Построим развертку усеченного конуса, также как в первом примере. Выберем команду «Патрубок конический тип 1». На Панели параметров задаем данные по усеченному конусу: 2 диаметра и высоту и нажимаем «Создать объект»

Откроется окно записи файла в котором нужно указать имя документа

Получаем чертеж развертки с размерами:

Усеченный геометрический объект

Усеченная фигура представляет собой объект в пространстве, который состоит из двух оснований разной площади и конической боковой поверхности. В отличие от исходного конуса, его усеченный вариант не имеет вершины. Остальные линейные элементы для него такие же, как для конуса с вершиной. У усеченной фигуры также имеется две директрисы, ограничивающие каждое из оснований, и одна генератриса, которая опирается на линии направляющих кривых.

Рассматриваемый геометрический объект также бывает нескольких видов (эллиптический, наклонный). Чаще всего в задачах по геометрии встречается именно круглый прямой усеченный конус, который ограничен двумя круглыми основаниями.

Способы построения

Можно выделить два основных способа построения усеченного круглого геометрического объекта:

  • из круглого прямого конуса;
  • с помощью трапеции.

В первом случае необходимо взять коническую фигуру и режущую плоскость, которая будет параллельна основанию. После этого с помощью плоскости следует отсечь верхнюю часть конуса. Оставшаяся под плоскостью фигура будет усеченной

Следует отметить, что совершенно неважно, какая часть конуса с вершиной будет отсечена. Чем больше она будет, тем ближе окажутся друг к другу значения верхнего и нижнего радиусов в усеченной фигуре, то есть тем ближе она по форме будет походить на прямой цилиндр.

Если прямоугольную трапецию поставить на большее основание и вращать ее вокруг перпендикуляра h, то получится усеченный конус. В нем отрезки a и b будут радиусами оснований объемной фигуры, перпендикуляр h станет высотой, а наклонный отрезок g будет представлять собой длину образующей. Эти четыре линейных характеристики определяют рассматриваемую объемную фигуру. Следует заметить, что для однозначного построения фигуры достаточно лишь трех любых из них, например, высоты и двух радиусов.

Площадь поверхности

Поверхность усеченной фигуры, в отличие от полного конуса, образована тремя частями: два круглых основания и боковая поверхность. Площади круглых оснований вычисляются по известной формуле для круга: pi*r2. Для боковой поверхности следует выполнить следующие действия:

Разрезать ее вдоль образующей и развернуть на плоскости.
Обратить внимание, что полученная фигура представляет собой сектор круга, у которого в верхней его части вырезан другой маленький сектор.
Достроить мысленно усеченную фигуру до полного конуса и определить его высоту H и директрису G. Через соответствующие параметры усеченного конуса они будут выражаться следующим образом: G = r1*g/(r1-r2), H = h*r1/(r1-r2), здесь радиусы оснований r1 и r2 такие, что r1>r2.
Рассчитать площади большого и маленького круговых секторов, а затем вычесть из первой вторую

В итоге получится следующая простая формула: Sb = pi*g*(r1 + r2).

Площадь всей поверхности рассматриваемой фигуры вычисляется как сумма трех величин S1, S2 и Sb:

S = S1 + S2 + Sb = pi*r12 + pi*r22 + pi*g*(r1 + r2).

Для определения величины S необходимо знать три линейных параметра усеченного конуса: радиусы оснований и длину генератрисы.

Формула объема

Для определения объема следует воспользоваться приемами, подобными тем, которые описаны в методике определения площади поверхности. Для начала следует усеченный конус достроить до полного, затем вычислить объемы фигур с высотами H и H-h по уже известной формуле. Разница этих объемов даст искомую формулу для усеченной фигуры с круглыми основаниями:

V = 1/3*pi*r12*H — 1/3*pi*r22*(H-h).

Подставляя в это выражение равенство для высоты H через линейные характеристики усеченной фигуры, можно получить конечную формулу:

V = 1/3*pi*h*(r12 + r22 + r1*r2).

Это выражение можно переписать не через линейные параметры, а через площади оснований фигуры S1 и S2:

V = 1/3*h*(S1 + S2 + (S1*S2)^0,5).

Записанная формула объема может быть получена универсальным способом без привлечения известного выражения для полного конуса. Для этого необходимо использовать интегральное исчисление, разбивая при этом усеченный геометрический объект на бесконечное количество тонких круглых дисков. Их радиусы будут постепенно уменьшаться от r1 до r2. Этот метод вывода формулы для объема не отличается от аналогичного для полного круглого конуса, изменяются лишь пределы интегрирования.

Развертка усеченного конуса .Подробное описание.

Развертка усеченного конуса является одним часто задаваемым заданием по инженерной графике для студентов в учебных заведениях.

Рассмотрим пошаговое построение с подробным описанием согласно этому заданию: дан конус высотой 120 мм и диаметром 100 мм. Необходимо провести линию сечения под углом 45 0 на расстоянии 60 мм от оси фигуры.

Приступим к выполнению:

1.) Чертим третий вид конуса;

2.) Разбиваем вид сверху на 12 составляющих частей. Это необходимо для построения развертки;

3.) Находим точки сечения на нижнем рисунке;

4.) Подписываем точки полученного сечения на видовых проекциях;

5.) Переносим точки сечения на третью проекцию (вид слева);

6.) Обводим толстыми видимыми линиями полученную фигуру;

7.) Строим развертку, если бы она не имела выреза. Отмеряется расстояние от вершины конуса до основания и от центральной оси чертится 12 участков;

8.) Обозначаем на развертке участки для лучшего представления о том где строить точки;

9.) Отмеряем расстояние на конусе (фронтальной проекции) циркулем и чертим таким же размером на развертке и подписываем  полученную точку. По такому принципу осуществляется нахождение точек на развертке;

10.) Обводим толстыми линиями чертежа полученную развертку усеченного конуса.

Вы также можете посмотреть видео:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector