Сопротивление теплопередаче ограждающих конструкций. расчет, таблица сопротивления теплопередаче

К чему стремиться?

    Вслед за странами Европы, в Российской Федерации и у нас в Беларуси приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение.

С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. В российском СНиПе есть таблица «Нормируемые значения сопротивления теплопередаче ограждающих конструкций» (слева картинка). Как и следовало ожидать, нормы по теплосопротивлению зависят от окружающей температуры и длительности отопительного периода. Эта зависимость описывается таким понятием, как «Градусо-сутки отопительного периода» или ГСОП, это условная единица измерения повышения среднесуточной температуры над заданным минимумом (базовой температурой). Показатель, равный произведению разности температуры внутреннего воздуха и средней температуры наружного воздуха за отопительный период на продолжительность отопительного периода.

ГСОП=(tv-t8)·z8, где

tv — расчётная температура внутреннего воздуха в зимний период (по ГОСТу равна 20°С),

t8 — средняя температура периода со средней суточной температурой воздуха ниже или равной 8°С,

z8 — продолжительность (в сутках) периода со средней суточной температурой воздуха ниже или равной 8°С.

Данные t8 и z8, а так же массу других интересных данных можно взять из таблиц СНиП 23-01-99 «Строительная климатология». В документе есть данные не только по России, но и по Беларуси, Грузии, Казахстану, Кыргызии, Молдове, Туркменистану, Узбекистану и Украине.

     Не смотря на всеобщий охват нормативной базы данных в российских документах, белорусские документы всё-же отличаются  (ТКП 45-2.04-43-2006 Строительная теплотехника. Строительные нормы проектирования.)

      Что же предписывает нам этот ТКП?    

      В связи с небольшой географической протяжённостью нашей страны требования к коэффициенту сопротивления теплопередаче у нас выражаются безо всяких формул, ГСОПов и прочих расчётов одной цифрой для всех регионов! Сопротивление теплопередаче наружных ограждающих конструкций R при строительстве жилых зданий, за исключением наружных дверей, ворот и ограждающих конструкций помещений с избытками явной теплоты, следует принимать не менее:

  • Наружные стены зданий — 3,2;

  • Совмещённые покрытия, чердачные перекрытия и перекрытия над проездами — 6,0;

  • Перекрытия над неотапливаемыми подвалами и техническими подпольями — 2,5;

  • Заполнение световых проёмов для всех типов зданий — 1,0.

Итак, мы видим, что наши отечественные требования всё-же более высокие, чем у наших соседей россиян, при том, что климат нашей страны в целом теплее.

        Вот к этим характеристикам и нужно стремиться, чтобы соответствовать современным стандартам!

Интереса ради мне попалась таблица, отражающая нормы ряда европейских стран по показателю R.

Основные варианты утепления

  • Пенополистирол (ППС) – плитный материал, производится путем вспенивания полистирола. Фактически строительный ППС представляет собой «белый» пенопласт.
  • Экструдированный пенополистирол (ЭППС) тоже изготавливается на основе пенополистирола методом выдавливания через экструдер. Ячеистая структура получается плотнее, за счет этого ЭППС меньше впитывает влагу и обладает меньшей теплопроводностью, чем ППС.

По старому ГОСТу пенополистирол обозначался сокращением ПСБ (пенополистирол беспрессовый). По новым стандартам принято наименование ППС. Изменения коснулись и обозначения плотности, которая обычно указывалась в виде цифры после наименования: ПСБ-15, ПСБ-25 или ППС–15, ППС-25. Отличие в том, что у ППС указывается минимальная, а у ПСБ максимальная плотность, то есть ПСБ-25 имеет разброс по значениям от 15 до 25 кг/м.куб., у ППС-25 плотность не менее 25 кг/м.куб.

Пенополиуретан (ППУ) – в большинстве случаев используется в виде напыляемого утеплителя. ППУ утеплитель действуют по схожему механизму с монтажной пеной – полимер выходит из баллона, затем под действием воздуха и влаги начинает расширяться.

Напыляемые утеплители позволяют создавать бесшовный теплоизолирующий слой. Отсутствие швов исключает теплопотери через стыки, но при этом все равно сохраняются стыки с другими материалами в конструкции (стыки со стропилами).

  • Эковата – напыляемый утеплитель на основе целлюлозы, основным сырьем для этого материала служит распушенная макулатура. Она хорошо сочетается с деревянными конструкциями из-за низкой горючести. Для нанесения требуется компрессор, что повышает затраты на выполнение работ.
  • Каменная (базальтовая) вата – плитный утеплитель, который изготавливают из расплавленных горных пород. Структурно материал состоит из тончайших нитей, воздух между волокнами служит основным теплоизолятором.
  • Стекловата – по способу изготовления и структуре этот утеплитель схож с каменной ватой, только в качестве сырья используется не базальт, а расплавленное стекло (кварц). Основным сырьем для стекловаты служит стеклянный бой.
  • PIR (пенополиизоцианурат) – плитный полимерный утеплитель, по химическому составу близкий к ППУ. Материал имеет структуру из закрытых ячеек, снаружи поверхности обклеивают фольгой (PIR Ф/Ф), крафтом (PIR КБ/КБ) или стеклохолстом (PIR СХМ/СХМ). Для сравнения с другими утеплителями возьмем наиболее распространенную разновидность с фольгой.

Теперь рассмотрим каждый параметр, в конце мы сведем все данные в единую таблицу.

Приложения

В электронике

Силовые полупроводниковые элементы , как правило , установлены на радиаторах (или охладители) предназначены для содействия эвакуации энергии , произведенной на уровне анода — катодные переходов для диодов , тиристоров , симисторов и GTOs или коллектор-эмиттер для биполярных транзисторов и IGBT — транзисторов , или сток-исток для полевых МОП-транзисторов . В этом случае тепловое сопротивление между переходом и окружающим воздухом складывается из трех тепловых сопротивлений:

Тепловое сопротивление распределительной коробки

Он указан в технических характеристиках производителя. Вот несколько порядков величины термического сопротивления в зависимости от типа обычных корпусов:

  • небольшие цилиндрические коробки из пластика или металла (ТО-39 / ТО-5, ТО-92 , ТО-18): от 20 до 175  К / Вт  ;
  • плоские промежуточные коробки из пластика ( ТО-220 , ТО-126 / СОТ-32): от 0,6 до 6  К / Вт  ;
  • Ящики для компонентов средней мощности, пластиковые или металлические (ISOTOP, ТО-247, ТОП-3, ТО-3): от 0,2 до 2  К / Вт  ;
  • модульные шкафы силовых компонентов: от 0,01 до 0,5  К / Вт .

Передача тепла между переходом и корпусом происходит в основном за счет теплопроводности .

Тепловое сопротивление корпуса-радиатора

Это зависит от поверхности контакта между элементом и радиатором, а также от наличия или отсутствия электрического изолятора. Передача тепла между корпусом и радиатором происходит в основном за счет теплопроводности. Например для коробки ТО-3: без изоляции, сухой: 0,25  К / Вт  ; без изоляции, с силиконовой смазкой  : 0,15  К / Вт  ; с изолирующей слюдой 50  мкм и силиконовой смазкой: 0,35  K / Вт .

Тепловое сопротивление теплоотвод-окружающий

Передача тепла между радиатором и окружающим воздухом происходит в основном за счет конвекции  : окружающий воздух облизывает радиатор; нагретый воздух при контакте поднимается вверх, его заменяет более холодный воздух и так далее. Тепловое сопротивление зависит от поверхности радиатора, его типа (плоская, ребристая и  т. Д. ), Ориентации (вертикальные части рассеивают калории лучше, чем горизонтальные), его цвета (черный излучает больше, чем блестящий). Его можно уменьшить путем принудительной циркуляции воздуха (как в персональных компьютерах) или путем циркуляции воды в трубах, предназначенных для этой цели. Тепловое сопротивление указано производителем.

В здании

В случае теплопередачи через стену значения конвекции не учитывают подвод тепла за счет излучения. В официальных текстах приведены значения теплового сопротивления теплообмена внутренней и внешней поверхности ( и ), которые учитывают явления конвекции и излучения.
рпротивv{\ displaystyle R_ {cv}}рsя{\ displaystyle R_ {si}}рsе{\ displaystyle R_ {se}}

Термическое сопротивление материалов иногда используется в тепловых нормах, например, RT 2005 во Франции. Однако от этого количества постепенно отказываются в пользу коэффициента теплопередачи U , который также учитывает использование продукта.

Ссылки [ править ]

  1. Тони Эбби. «Использование FEA для термического анализа». Журнал Desktop Engineering. 2014 июнь. п. 32.

  2. .
  3. ^ Ласанс, CJM (2008). «Десять лет независимого от граничных условий компактного теплового моделирования электронных деталей: обзор». Теплообменная техника . 29 (2): 149–168. Bibcode : . DOI : .
  4. Хо-Мин Тонг; И-Шао Лай; КП Вонг (2013). . Springer Science & Business Media. стр.  -461. ISBN 978-1-4419-5768-9.
  5. Юнес Шабани (2011). Теплообмен: тепловое управление электроникой . CRC Press. С. 111–113. ISBN 978-1-4398-1468-0.
  6. Клеменс Дж. М. Ласанс; Андраш Поппе (2013). Управление температурным режимом для светодиодных приложений . Springer Science & Business Media. п. 247. ISBN. 978-1-4614-5091-7.
  7. . 2013-02-22.
  8. Швейцер, Д .; Pape, H .; Chen, L .; Kutscherauer, R .; Уолдер, М. (2011). «Переходное измерение двойного интерфейса — новый стандарт JEDEC для измерения термического сопротивления перехода между корпусом». 2011 27-й ежегодный симпозиум IEEE Semiconductor по тепловым измерениям и управлению . п. 222. DOI . ISBN 978-1-61284-740-5.
  9. ^ Incropera, Девитт, Бергман, Лавин, Фрэнк П., Дэвид П., Теодор Л., Эдриенн С. (2013). Принципы тепломассообмена . Джон Уайли и сыновья; 7-е издание, международное издание. ISBN 978-0470646151.

10. К. Эйналипур, С. Садегзаде , Ф. Молаи. «Инженерия межфазного термического сопротивления гетероструктуры полианилин (C3N) -графен», Журнал физической химии, 2020. DOI:

  • Михаэль Ленц, Гюнтер Стридл, Ульрих Фрелер (январь 2000 г.) . Infineon Technologies AG , Мюнхен , Германия .
  • Directed Energy, Inc./IXYSRF (31 марта 2003 г.) . , Форт-Коллинз, Колорадо. Пример расчета теплового сопротивления и рассеиваемой мощности в полупроводниках.

Ассоциации термического сопротивления

Терморезисторы серии

Случай стены, состоящей из трех разных слоев.

Обычно стена окружена жидкостями с обеих сторон. Явления конвекции возникают на каждой из его сторон, а явление теплопроводности отвечает за передачу тепла через стену. Последний может состоять из нескольких слоев, как показано на рисунке напротив. Каждое из его явлений вызывает тепловое сопротивление, которое можно включить последовательно по аналогии с электрическими сопротивлениями . В этом случае различные тепловые сопротивления включены последовательно, общее тепловое сопротивление является суммой тепловых сопротивлений. Предполагается, что эти температуры, а также коэффициенты тепловой и жидкостной конвекции постоянны и однородны по отношению к контактным поверхностям.
чася{\ displaystyle h_ {i}}часе{\ displaystyle h_ {e}}

ртчасзнак равно1часяS+е1λ1S+е2λ2S+е3λ3S+1часеS{\ displaystyle R _ {\ mathrm {th}} = {\ frac {1} {h_ {i} S}} + {\ frac {e_ {1}} {\ lambda _ {1} S}} + {\ frac {e_ {2}} {\ lambda _ {2} S}} + {\ frac {e_ {3}} {\ lambda _ {3} S}} + {\ frac {1} {h_ {e} S }}}
Φзнак равноТпротив-Тжртчас{\ displaystyle {\ Phi} = {\ frac {T_ {c} -T_ {f}} {R _ {\ mathrm {th}}}}}.

Терморезисторы параллельно

Терморезисторы параллельно

В случае композитной стены, состоящей из нескольких материалов, температура поверхности которых одинакова, можно рассматривать, по аналогии с электрическим сопротивлением, ассоциацию параллельных сопротивлений. и поскольку сопротивления каждой из стен в отдельности, сопротивление в целом стоит:
ртчас1{\ Displaystyle R _ {\ mathrm {th1}}}ртчас2{\ Displaystyle R _ {\ mathrm {th2}}}

ртчасзнак равнортчас1ртчас2ртчас1+ртчас2{\ Displaystyle R _ {\ mathrm {th}} = {\ frac {R _ {\ mathrm {th1}} \, R _ {\ mathrm {th2}}} {R _ {\ mathrm {th1}} + R _ {\ mathrm {th2}}}}}.

Выбор плотности утеплителя

Прежде чем решить, какую выбрать плотность теплоизоляции, необходимо определить, где она будет устанавливаться. Если планируется утепление стен, важную роль играет тип облицовки. Она определяет тип и плотность теплоизолятора. Так, для жилого дома рекомендуется использовать базальтовую вату, которая имеет низкую теплопроводность, высокую пожароустойчивость и экологичность.

Для облицовки сайдингом подойдет базальтовый теплоизолятор с показателями 40-90 кг/м³. Чем выше располагается теплоизоляция, тем больше должен быть показатель. Если поверхность будет оштукатуриваться, тогда нужно выбирать специальную теплоизоляцию для фасадных работ. Плотность должна составлять 140-160 кг/м³. При данных работах применяют специальные элементы, которые обладают высокими показателями паропроницаемости и прочности на отрыв. Для внутренних работ используют теплоизоляционный материал с низкой плотностью.

При кровельных работах выбор изоляции зависит от вида крыши. Если крыша скатная, выбирают утеплитель с показателями 30-45 кг/м³. Для утепления мансарды показатель должен быть не менее 35-40 кг/м³. Плоская кровля должна выдерживать большие нагрузки, которые оказывают снег, ветер и другие атмосферные явления. Поэтому в данном случае должна использоваться теплоизоляция с плотностью от 150 кг/м³, если используется минеральная вата. Для пенополистирола этот показатель должен быть не более 40 кг/м³.

Для изоляции пола от холода следует выбирать материал, у которого давление массы на единицу объема достаточно высокое. Однако если планируется укладка материала между лагами, можно использовать рыхлый утеплитель. Лаги принимают на себя всю нагрузку, и перед теплоизоляцией не ставится задача выдержать оказываемое давление.

Нормируемое сопротивление теплопередаче по СНиП – таблица

Чтобы построить теплый дом – требуется утеплитель. Против этого уже никто не возражает. В современных условиях построить дом, отвечающий требованиям СНиП, без применения утеплителя невозможно.

То есть, деревянный или кирпичный дом, конечно, построить возможно. И строят все также. Однако чтобы соответствовать требованиям Строительных Норм и Правил, его коэффициент сопротивления теплопередаче стен R должен быть не менее 3,2. А это 150 см обычной кирпичной стены.

Для чего, спрашивается, строить «крепостную стену» в полтора метра, когда можно для получения такого же показателя R=3,2 использовать всего 15 см высокоэффективного утеплителя – базальтовой ваты или пенопласта?

А если вы проживаете не в Подмосковье, а в Новосибирской области или в ХМАО? Тогда для вас коэффициент сопротивления теплопередаче для стен будет другим. Каким? Смотрите таблицу.

Таблица 4. Нормируемое сопротивление теплопередаче СНиП 23-02-2003 (текст документа):

Внимательно смотрим и комментируем. Если что-то непонятно, задаем вопросы через ФОРМУ СВЯЗИ или пишем в адрес редактора сайта – ответ будет у вас на электронной почте или в разделе НОВОСТИ.

Итак, в данной таблице нас интересует два вида помещений – жилые и бытовые. Жилые помещения, это, понятно, в жилом доме, который должен соответствовать требованиям СНиП. А бытовые помещения — это утепленные и отапливаемые баня, котельная и гараж. Сараи, кладовые и прочие хозяйственные постройки утеплению не подлежат, а значит, и показателей по теплосопротивлению стен и перекрытий для них нет.

Все требования, регламентирующие приведенной сопротивление теплопередаче по СНиП, разделяются по регионам. Регионы отличаются друг от друга продолжительностью отопительного сезона в холодное время года и предельными отрицательными температурами.

Таблицу, в которой указаны градусо-сутки отопительного сезона для всех основных городов России, можно увидеть в конце материала (Приложение 1).

Для примера, Московская область относится к региону с показателем D = 4000 градусо-суток отопительного периода. Для этого региона установлены следующие показатели СНиП сопротивления теплопередаче (R):

  • Стены = 2,8
  • Перекрытия (пол 1 этажа, чердак или потолок мансарды) = 3,7
  • Окна и двери = 0,35

Чтобы сделать расчет толщины утеплителя, используем формулу расчета и таблицу для основных утеплителей, применяемых в строительстве. Все эти материалы есть на нашем сайте – доступны при переходе по ссылкам.

С расчетами по стоимости утепления все предельно просто. Берем сопротивление стены теплопередаче и подбираем такой утеплитель, который при своей минимальной толщине будет устраивать нас по бюджету и вписываться в требования СНиП 23-02-2003.

Смотрим теперь градусо-сутки отопительного сезона для своего города, в котором вы проживаете. Если вы живете не в городе, а рядом, то можете использовать значения на 2-3 градуса выше, так как фактическая зимняя температура в крупных городах на 2-3 градуса выше, чем в области. Этому способствуют большие теплопотери на теплотрассах и выброс тепла в атмосферу тепловыми электростанциями.

Таблица 4.1. Градусо-сутки отопительного сезона для основных городов РФ (Приложение 1):

Чтобы использовать данную таблицу в расчетах, где фигурирует нормируемое сопротивление теплопередаче, можно взять средние значения внутренней температуры помещений в +22С.

Но тут уж, как говорится, на вкус и цвет – кто-то любит, чтобы было тепло и ставит регулятор по воздуху своего газового котла на +24С. А кто-то привык жить в более прохладном доме и держит температуру помещений на уровне в +19С. Как видите, чем прохладнее постоянная температура в помещении, тем меньше у вас уходит газа или дров на отопление своего дома.

Кстати, доктора нам говорят, что жить в доме при температуре +19С гораздо полезнее, чем при +24С.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность

Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.

Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.

Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором. Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов. Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
Влажность – злокачественный фактор, повышающий скорость прохождения тепла

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.

«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Сопротивление композитной стены

Параллельное тепловое сопротивление

Как и в случае с электрическими цепями, полное тепловое сопротивление для установившегося режима можно рассчитать следующим образом.

Параллельное тепловое сопротивление в композитных стенах

Общее термическое сопротивление

1Rtot=1RB+1RC{\displaystyle {{1 \over R_{\rm {tot}}}={1 \over R_{B}}+{1 \over R_{C}}}}          (1)

Упрощая уравнение, получаем

Rtot=RBRCRB+RC{\displaystyle {R_{\rm {tot}}={R_{B}R_{C} \over R_{B}+R_{C}}}}          (2)

Используя термины для термического сопротивления проводимости, мы получаем

Rt,cond=L(kb+kc)A{\displaystyle {R_{t,{\rm {cond}}}={L \over (k_{b}+k_{c})A}}}          (3)

Сопротивление последовательно и параллельно

Часто целесообразно предполагать одномерные условия, хотя тепловой поток многомерен. Теперь для этого случая можно использовать две разные схемы. Для случая (а) (показанного на рисунке) мы предполагаем изотермические поверхности для нормальных к направлению x, тогда как для случая (b) мы предполагаем адиабатические поверхности, параллельные направлению x. Мы можем получить разные результаты для общего сопротивления, и соответствующие фактические значения теплопередачи заключены в скобки . Когда многомерные эффекты становятся более значительными, эти различия увеличиваются с увеличением .ртот{\ displaystyle {R_ {tot}}}q{\ displaystyle {q}}|kж-kграмм|{\ displaystyle {| k_ {f} -k_ {g} |}}

Эквивалентные тепловые схемы для последовательно-параллельной композитной стены

Радиальные системы

Сферические и цилиндрические системы можно рассматривать как одномерные из-за градиентов температуры в радиальном направлении. Стандартный метод может использоваться для анализа радиальных систем в условиях стационарного состояния, начиная с соответствующей формы уравнения теплопроводности, или альтернативный метод, начиная с соответствующей формы закона Фурье . Для полого цилиндра в установившемся режиме без тепловыделения соответствующая форма уравнения теплопроводности имеет вид

1rddr(krdTdr)={\displaystyle {{1 \over r}{d \over dr}\left(kr{dT \over dr}\right)=0}}          (4)

Где рассматривается как переменная. При рассмотрении соответствующей формы закона Фурье физическое значение рассмотрения как переменной становится очевидным, когда скорость, с которой энергия проходит по цилиндрической поверхности, представлена ​​как
k{\ displaystyle {k}}k{\ displaystyle {k}}

qr=−kAdTdr=−k(2πrL)dTdr{\displaystyle {q_{r}=-kA{dT \over dr}=-k(2\pi rL){dT \over dr}}}          (5)

Где область, перпендикулярная направлению теплопередачи. Уравнение 1 подразумевает, что величина не зависит от радиуса , из уравнения 5 следует, что скорость теплопередачи является постоянной в радиальном направлении.
Азнак равно2πрL{\ displaystyle {A = 2 \ pi rL}}kр(dТdр){\ displaystyle {kr (dT / dr)}}р{\ displaystyle {r}}qр{\ displaystyle {q_ {r}}}

Полый цилиндр с условиями конвективной поверхности по теплопроводности

Чтобы определить распределение температуры в цилиндре, уравнение 4 может быть решено с применением соответствующих граничных условий . В предположении, что постоянный
k{\ displaystyle {k}}

T(r)=C1ln⁡r+C2{\displaystyle {T(r)=C_{1}\ln r+C_{2}}}          (6)

Используя следующие граничные условия, можно вычислить
константы иC1{\ displaystyle {C_ {1}}}C2{\ displaystyle {C_ {2}}}

T(r1)=Ts,1{\displaystyle {T(r_{1})=T_{s,1}}}          and          T(r2)=Ts,2{\displaystyle {T(r_{2})=T_{s,2}}}

Общее решение дает нам

Ts,1=C1ln⁡r1+C2{\displaystyle {T_{s,1}=C_{1}\ln r_{1}+C_{2}}}          and          Ts,2=C1ln⁡r2+C2{\displaystyle {T_{s,2}=C_{1}\ln r_{2}+C_{2}}}

Решение для и и подставляя в общее решение, получим
C1{\ displaystyle {C_ {1}}}C2{\ displaystyle {C_ {2}}}

T(r)=Ts,1−Ts,2ln⁡(r1r2)ln⁡(rr2)+Ts,2{\displaystyle {T(r)={T_{s,1}-T_{s,2} \over {\ln(r_{1}/r_{2})}}\ln \left({r \over r_{2}}\right)+T_{s,2}}}          (7)

Логарифмическое распределение температуры схематично показано на вставке эскиза рисунка. Предполагая, что распределение температуры, уравнение 7, используется с законом Фурье в уравнении 5, скорость теплопередачи может быть выражена в следующей форме

Q˙r=2πLk(Ts,1−Ts,2)ln⁡(r2r1){\displaystyle {{\dot {Q}}_{r}={2\pi Lk(T_{s,1}-T_{s,2}) \over \ln(r_{2}/r_{1})}}}

Наконец, для радиальной проводимости в цилиндрической стенке тепловое сопротивление имеет вид

Rt,cond=ln⁡(r2r1)2πLk{\displaystyle {R_{t,\mathrm {cond} }={\ln(r_{2}/r_{1}) \over 2\pi Lk}}} such that r2>r1{\displaystyle {r_{2}>r_{1}}}
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector