Расчет воздухообмена
Содержание:
- 2 Определение размеров поперечного сечения
- Вентилирование ремонтного цеха
- Расчет приточно-вытяжной вентиляции производственного помещения
- Расчёт мощности нагревания в сети
- Как подобрать сечение воздуховода?
- Расчет естественной вытяжной вентиляции
- Выбор приточной установки
- 2 Естественный воздушный поток
- Вычисление воздухообмена
- Примеры вычислений
- Таблица воздухообмена
- Аэродинамические параметры вентиляторов
2 Определение размеров поперечного сечения
Не последнюю роль в рассматриваемом вопросе также играет расчет сечения воздуховода вентиляции, который подразумевает вычисление площади всей внутренней системы. В этот перечень входит не только воздуховод, но и примыкающие к нему фасонные изделия (переходники, тройники, трубы, заглушки, дефлекторы и пр.). В последнее время для обустройства вентиляционных систем применяются такие основные и дополнительные элементы:
- 1. Купол или зонт вытяжки в виде трапеции, который классифицируется по типу конструкции на островной и пристенный. В данном случае за основу расчета можно будет взять формулу для усеченной пирамиды разных видов.
- 2. Воздуховод с круглым, квадратным или прямоугольным поперечным сечением. Для того чтобы выполнить эти вычисления, можно воспользоваться формулами нахождения площади цилиндра, куба или прямоугольного параллелепипеда.
- 3. Дефлекторы имеют более сложную конструкцию, поэтому расчет их площади можно будет произвести только после условного разбития элемента на отдельные геометрические фигуры (конус, цилиндр и пр.).
- 4. Соединительные конструкции (отводы, переходы, тройники, заглушки и утки) рассчитываются также, как и дефлекторы.
Воспользовавшись приведенными выше способами вычисления, необходимо ознакомиться с особыми рекомендациями, регламентированными принятыми строительными нормами и правилами, после чего можно завершать подбор наиболее точного значения мощностного потенциала системы вентиляции в доме.
- 1. Купол или зонт вытяжки в виде трапеции, который классифицируется по типу конструкции на островной и пристенный. В данном случае за основу расчета можно будет взять формулу для усеченной пирамиды разных видов.
- 2. Воздуховод с круглым, квадратным или прямоугольным поперечным сечением. Для того чтобы выполнить эти вычисления, можно воспользоваться формулами нахождения площади цилиндра, куба или прямоугольного параллелепипеда.
- 3. Дефлекторы имеют более сложную конструкцию, поэтому расчет их площади можно будет произвести только после условного разбития элемента на отдельные геометрические фигуры (конус, цилиндр и пр.).
- 4. Соединительные конструкции (отводы, переходы, тройники, заглушки и утки) рассчитываются также, как и дефлекторы.
Расчет вентиляции Breezart для бассейна
Вентилирование ремонтного цеха
Особенностью является неравномерное, интенсивное выделение сварочных аэрозолей в определенных зонах. При ремонте крупногабаритного оборудования, машин невозможно организовать локальные вытяжки. Также могут быть ограничения по тепловому снабжению ремонтно-технического блока.
Чертеж вентиляции цеха составляется в соответствии со всеми сопутствующими факторами. Возможна организация локальных климатических зон определенной структуры. На высоте скопления сварочного дыма монтируются воздуховоды, через которые воздухопоток отводится и фильтруется. С другой стороны подается приток (очищенный с добавлением свежей воздушной массы) над рабочей зоной, создавая таким образом воздушную циркуляцию.
Расчет приточно-вытяжной вентиляции производственного помещения
Для того, чтобы сделать проект приточно-вытяжной вентиляции, первым делом определяется источник вредных веществ. Затем высчитывается сколько чистого воздуха необходимо для нормальной работы людей и сколько загрязненного воздуха необходимо вывести из помещения.
Каждое вещество имеет свою концентрацию, и нормы содержания их в воздухе тоже различны. Поэтому расчеты делаются для каждого вещества в отдельности, а результаты потом суммируются. Для создания правильного воздушного баланса необходимо учитывать количество вредных веществ и локальных отсосов, чтобы сделать расчет и определить, сколько необходимо чистого воздуха.
Различают четыре схемы воздухообмена приточно-вытяжной вентиляции на производстве: сверху-вниз, сверху-вверх, снизу-вверх, снизу-вниз.
Расчет производится по формуле:
Кр=G/V,
- где Кр — кратность воздухообмена,
- G — единица времени (час),
- V -объем помещения.
Правильный расчет необходим, чтобы потоки воздуха не попадали в смежные помещения и не удалялись оттуда. Также устройство, подающее свежий воздух, должно располагаться со стороны оборудования, чтобы вредные вещества или пары не попадали на людей. Все эти моменты должны быть учтены.
Если при производственном процессе выделяются вредные вещества тяжелее воздуха, то необходимо использовать комбинированные схемы воздухообмена, при которых 60% вредных веществ будет удаляться из нижней зоны, а 40% — из верхней.
Выводящей излишки тепла и вредные испарения
Это наиболее сложный расчет, потому что надо брать в расчет несколько факторов, и вредные вещества могут быть распределены на большой площади. Рассчитывается количество вредных веществ по следующей формуле:
L=Мв/(упом-уп),
- где L — необходимое количество свежего воздуха,
- Мв — масса выделяемого вредного вещества (мг/ч),
- упом — удельная концентрация вещества (мг/м3),
- уп — концентрация этого вещества в воздухе, поступающем через систему вентиляции.
При выделении нескольких видов разных веществ, расчет делается для каждого отдельно, а потом суммируется.
Системы, нормализующей уровень влажности
Для этого расчета сначала необходимо определить все источники образования влаги. Влага может образоваться:
- при кипении жидкости,
- при испарении из открытых емкостей,
- утечки влаги из аппаратов.
Суммируя выделение влаги из всех источников, составляется расчет для системы воздухообмена, нормализующего уровень влажности. Это делается для создания нормальных условий труда и соблюдения санитарно-гигиенических норм.
Формула для воздухообмена:
L=G/(Dyx-Dnp)
- Где Dух=MухJух,
- а Dпр=MпрJпр.
- Jух и Jпр — относительные влажности уходящего и приточного воздуха,
- Mух и Mпр — массы водяных паров, находящихся в уходящем и приточном воздухе при полном его насыщении и соответствующей температуре.
Вентиляции при высокой концентрации людей
Данный расчет наиболее прост, так как здесь отсутствуют расчеты при выделении вредных веществ, и берутся в расчет только выделения от жизнедеятельности людей. Присутствие чистого воздуха обеспечит высокую производительность труда, соблюдение санитарных норм, чистоту технологического процесса.
Для вычисления необходимого объема чистого воздуха, используют следующую формулу:
L=Nm,
- где L необходимое количество воздуха (м3/ч),
- N количество работающих людей в данном помещении, m – воздух, необходимый для дыхания одного человека в час.
По санитарным нормам, расход чистого воздуха на одного человека составляет 30 м3 в час, если помещение проветривается, если же нет, то эта норма удваивается.
Расчёт мощности нагревания в сети
Температура воздуха, поступающего в помещения, строго регламентируется. К примеру, для жилых сооружений минимальное значение составляет +18°С. Для расчёта мощности используемого нагревательного оборудования необходимо из нормативов узнать минимальное значение температуры той климатической зоны, где расположено здание. Разница этих температур является основным фактором определения мощности нагревательного устройства. При этом, совсем не обязательно использовать максимально мощный калорифер, способный обеспечить нагрев помещения при минимальной внешней температуре. Если вентиляция имеет систему регулировки производительности, то во время максимальной нагрузки на калорифер просто снижается интенсивность подачи воздуха.
Расчёт мощности нагревательного устройства осуществляется по формуле:
Р — расчётная мощность устройства нагрева (рекуператор или калорифер), (кВт);
Δt — разница значений температуры воздуха на входе в систему вентиляции и на подаче в помещение, (°С);
Q — производительность вентиляционной системы, (м³/ч);
τv — объёмная теплоёмкость воздуха, зависит от совокупности значений влажности, температуры и давления, но принимается в качестве коэффициента 0,336 Вт × (ч/м³/°С).
Примеры использования воздуховодов в качестве декоративного элемента помещений
Как подобрать сечение воздуховода?
Система вентилирования, как известно, может быть канальной или бесканальной. В первом случае нужно правильно подобрать сечение каналов. Если принято решение устанавливать конструкции с прямоугольным сечением, то соотношение его длины и ширины должно приближаться к 3:1.
Длина и ширина сечения канальных воздуховодов с прямоугольной конфигурацией должны соотноситься как три к одному, чтобы уменьшить количество шума
Стандартная скорость перемещения воздушных масс по основному вентканалу должна составлять около пяти метров в секунду, а на ответвлениях — до трех метров в секунду. Это обеспечит работу системы с минимальным количеством шума. Скорость движения воздуха во многом зависит от площади сечения воздуховода.
Чтобы подобрать размеры конструкции, можно использовать специальные расчетные таблицы. В такой таблице нужно выбрать слева объем воздухообмена, например, 400 куб.мч, а сверху выбрать значение скорости — пять метров в секунду.
Затем нужно найти пересечение горизонтальной линии по воздухообмену с вертикальной линией по скорости.
С помощью этой диаграммы вычисляют сечение воздуховодов для канальной вентиляционной системы. Скорость движения в магистральном канале не должна превышать 5 м/сек
От этого места пересечения проводят линию вниз до кривой, по которой можно определить подходящее сечение. Для прямоугольного воздуховода это будет значение площади, а для круглого – диаметр в миллиметрах. Сначала делают расчеты для магистрального воздуховода, а затем – для ответвлений.
Таким образом расчеты делают, если в доме планируется только один вытяжной канал. Если же предполагается установить несколько вытяжных каналов, то общий объем воздуховода по вытяжке нужно разделить на количество каналов, а затем провести расчеты по изложенному принципу.
Эта таблица позволяет подобрать сечение воздуховода для канальной вентиляции с учетом объемов и скорости перемещения воздушных масс
Кроме того, существуют специализированные калькуляционные программы, с помощью которых можно выполнить подобные расчеты. Для квартир и жилых домов такие программы могут быть даже удобнее, поскольку дают более точный результат.
Расчет естественной вытяжной вентиляции
Потом, в связи от участка открытия верхних и нижних соответственно, приточных и вытяжных фрамуг в помещении приблизительно в центре высоты сооружения получается степень одинаковых давлений, в этом месте влияние точно также нулю. В соответствии, влияние в степени сосредоточении нижних просветов станет равняться:
- где ср– равна средней температуре плотности воздушных масс в помещении, кг/м3;
- h1– высoта oт плоскости одинаковых давлений до нижних просветов, м.
На уровне центров верхних просветов, выше плоскости одинаковых давлений образуется избыточное напряжение, Па, равняющееся:
Именно это давление и оказывает воздействие на вытяжку воздуха. Общее напряжение, располагающее для обмена воздушных потоков в комнате:
Выбор приточной установки
Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали.
Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.
Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².
Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.
Заметим, что многие современные вентиляторы имеют пологие вент.характеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.
После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:
- Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
- «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
- Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
- Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.
2 Естественный воздушный поток
Большое влияние на направление потока оказывает давление. Если его показатели выше снаружи здания, то чистый воздух поступает извне, в обратном случае он выходит из помещения. Иногда такие процессы протекают совместно.
Активный воздухообмен зачастую происходит случайно, когда температура в помещении и на улице имеет большую разницу в показателях. Другое условие — это отдельные участки с разными коэффициентами давления со стороны корпуса, усиленно обдуваемые ветром. Это явление называется инфильтрацией — поток попадает внутрь с наветренной стороны и выводится наружу с подветренной.
При естественной вентиляции коэффициент обмена воздуха не превышает отметку 0,5. Но нельзя обеспечить комфортные условия труда при неорганизованном вентилировании помещения. Обязательно нужно провести расчеты и разработать систему циркуляции воздуха.
Вычисление воздухообмена
Специалисты используют две основные схемы:
- По укрупненным показателям. В данной методике не предусматриваются вредные выбросы, такие как тепло и вода. Условно назовем его «Способ №1».
- Метод с учётом избытков тепла и влаги. Условное название «Способ №2».
Способ №1
Единица измерения — м3/ч (кубические метры в час). Применяют две упрощенные формулы:
L=K ×V(м3/ч); L=Z ×n (м3/ч), где
K – кратность воздухообмена. Отношение объёма приточки за одни час, к общему воздуху в помещении, крат в час;V – объём помещения, м3;Z – значение удельного обмена воздуха за единицу верчения,n – количество единиц измерения.
Подбор вентрешёток осуществляется по специальной таблице. При подборе также учитывается средняя скорость прохождение потока воздуха по каналу.
Таблица выбора размеров вентиляционных решёток
Способ №2
При расчёте учитывается ассимиляция тепла и влаги. Если в производственном или общественном здании избыток тепла, то используется формула:
где ΣQ — сумма тепловыделений от всех источников, Вт;с – тепловая ёмкость воздуха, 1 кДж/(кг*К);tyx – температура воздуха, направленного на вытяжку,°С;tnp — температура воздуха, направленного на приточку,°С;Температура воздуха, направленного на вытяжку:
где tp.3 – нормативная тем-ра в рабочей зоне,0С;ψ- коэффициент увеличение температуры, зависящий от высоты измерения, равный 0,5-1,5 0С/м;Н – длина плеча от пола до середины вытяжки, м.
Когда технологический процесс предполагает выделение большого объема влаги, то используется другая формула:
где G – объём влаги, кг/ч;dyx и dnp – содержание воды на один килограмм сухого воздуха приточки и вытяжки.
Существует несколько случаев, более подробно описанных в нормативной документации, когда требуемые воздухообмен определяется по кратности:
L=k×V, где
k – кратность смены воздуха в помещении, раз в час;V — объём помещения, м3.
Расчёт сечения
Площадь поперечного сечения воздуховода измеряется в м2. Её можно посчитать по формуле:
где v – скорость воздушных масс внутри канала, м/с.
Различается для основных воздуховодов 6-12 м/с и боковых придатков не более 8 м/с. Квадратура влияет на пропускную способность канала, нагрузку на него, а также уровень шума и способ монтажа.
Расчёт потерь давления
Стенки воздуховода не гладкие, и внутренняя полость не заполнена вакуумом, поэтому часть энергии воздушных масс при движении теряется на преодоления этих сопротивлений. Величина потери рассчитывается по формуле:
где ג – сопротивление трению, определяется, как:
Формулы, приведенные выше, являются правильными для каналов круглого сечения. Если воздуховод квадратный или прямоугольный, то существует формула приведения к эквиваленту диаметра:
где a,b – размеры сторон канала, м.
Мощность напора и двигателя
Напор воздуха от лопастей H должен полностью компенсировать потери давления P, при этом создавая расчётное динамическое Pд на выходе.
H = P + Pд.
Мощность электрического двигателя вентилятора:
Подбор калорифера
Часто отопление интегрируется в систему вентиляции. Для этого используются калориферы, разные виды рекуператоров, а также метод рециркуляции. Выбор устройства осуществляется по двум параметрам:
- Qв – предельный расход тепловой энергии, Вт/ч;
- Fk – определение поверхности нагрева для калорифера.
Расчёт гравитационного давления
Применяется только для естественной системы вентилирования. С его помощью определяется её производительность без механического побуждения.
Примеры вычислений
Вытяжной
Чтобы рассчитать параметры вытяжных вентиляционных систем, требуется сначала обратить внимание на СНиП. В соответствии с этим документом, если активность одного человека мала, потребность в воздухе составит 20 м3 за час. При средней активности этот показатель вырастает до 40, а при высокой – даже до 60 куб
м. Что касается кратности обмена, в спальных помещениях она составляет единицу. Для санитарных узлов вводится коэффициент 3, то же значение принимается для кухни
При средней активности этот показатель вырастает до 40, а при высокой – даже до 60 куб. м. Что касается кратности обмена, в спальных помещениях она составляет единицу. Для санитарных узлов вводится коэффициент 3, то же значение принимается для кухни.
Пусть требуется рассчитать потребность в вытяжке воздуха для комнаты площадью 20 кв. м., при этом в доме обитают двое жильцов. Если принять стандартную высоту комнаты, то по общей формуле получают объем 50 м3. При средней кратности 2 получается результат 100 куб. м. за час. Если же исходить из среднего уровня активности, можно предположить, что потребность составит 80 м3. Но, как и принято в обычной ситуации, применяют наивысший показатель, последовательно вычисляя параметры для всех комнат и затем суммируя их.
Учитывая особенности реального российского климата, даже в самых теплых регионах нельзя обойтись без прогрева воздуха. Строительные нормы предусматривают, что температура в помещениях, где даже периодически бывают люди, не должна быть ниже 18 градусов. Потому необходимая мощность нагревательных приборов определяется с отсчетом от наиболее низкой температуры уличного воздуха, который приходится подогревать. Пусть расходуется 180 м3 воздуха за 60 минут, а нагреватель имеет мощность 2000 Вт.
Разделив этот показатель на часовой поток и на незыблемый коэффициент 2,98, получают 33 градуса. А значит, предельно допустимый для такой конфигурации мороз составляет -15 градусов. Если температура опустится ниже, вентиляция не справится со своей задачей. Для расчета вентиляции по тепловыделениям и по теплоизбыткам используется ряд особых показателей.
В формулу L=3,6*Q/ (c*р* (tyx-tnp) после знака равенства последовательно подставляются:
- излишек тепла (в ваттах);
- тепловая емкость воздуха (по умолчанию принимается равной 1,005 кДж/ (кг*°С);
- удельная масса воздуха 1,2 кг на 1 куб. м;
- температура воздуха, который требуется отводить из помещений, расположенных за рамками основной зоны;
- температура первоначально поступающего извне воздуха.
Подсчитывая давление и связанную с ним скорость перемещения масс воздуха, надо принять во внимание, какова площадь сечения каналов. Дополнительно анализируют:. Дополнительно анализируют:
Дополнительно анализируют:
- геометрию каналов;
- суммарную силу вентиляторов;
- число переходов
Приточной
Аэродинамический расчет приточной вентиляции производится путем умножения объема вентилируемого пространства на кратность обмена воздушной массы.
Пусть данные таковы:
- квартира 48 кв. м;
- высота потолков 2 м;
- нужно 2 раза за час обеспечить полную смену всего содержащегося воздуха.
Тогда требуется поддержать подачу 192 куб. м. воздуха за каждые 60 минут. Укрупненные расчеты проводятся не только для единицы объема, но и для каждого жильца, а также для источников выделений. Как обычно, кратность определяется сообразно специфике помещения. В проветриваемых пространствах на 1 жильца должно приходиться 30 куб. м. Если проветривание не производится, этот показатель составит 60 куб. м.
По кратности
Кратность рассчитывается так: делят общее количество воздуха на объем. Если количество доставляемого воздуха составляет 200 куб. м. за час, а объем квартиры — 100 м3, то кратность, очевидно, составит 2. За счет естественной аэрации можно обеспечить не более 4 смен воздуха за 1 час. Потребность высчитывают очень просто. Требуется только разделить количество поступающего загрязняющего агента на разность ПДК и содержания этого же вещества во внешней атмосфере.
По санитарно-гигиеническим нормам
Пусть в рабочем кабинете живет условно 1 человек постоянно и 1 человек временно. Тогда суммарный часовой объем притока воздуха составит 60+20, то есть 80 куб. м. Так как для гостиной число временных жителей принимается равным 2, то необходимо обеспечить циркуляцию уже 160 м3. Если часть помещений сбалансирована по величине воздушного притока, а другие — нет, то требуется компенсировать недостаток притока за счет подачи в смежные с проблемными комнаты. Более точную информацию могут предоставить профессионалы, составляющие уравнения воздушных балансов и решающие их.
Таблица воздухообмена
После того, как расчёт воздухообмена проведён для каждого из помещений, составляется таблица воздухообмена. Она представляет собой список всех помещений с указанием расходов приточного и вытяжного воздуха, а также обозначения систем, которые будут обслуживать данное помещение. Ниже приведён пример таблицы воздухообмена:
№ | Наименование помещения | Приток | Вытяжка | Обозначение систем |
1 | Тамбур | — | ||
2 | Коридор | 100 | 100 | П1, В1 |
3 | Ресепшен | 120 | 90 | П1, В1 |
4 | Офис | 280 | 230 | П1, В1 |
5 | Офис | 360 | 300 | П1, В1 |
6 | Офис | 360 | 300 | П1, В1 |
7 | Санузел | 200 | В2 | |
ИТОГО: | 1220 | 1220 |
Помимо расходов воздуха таблица воздухообмена также может содержать иные данные, которые помогают определить расход воздуха — площадь и высоту помещений, кратность воздухообмена по нормам, количество человек и посетителей и другую информацию. При подготовке такой расширенной таблицы воздухообмена в Excel появляется возможность ввести формулы расчёта расходов воздуха. Таким образом, достигается автоматизация расчёта воздухообмена.
Из таблицы воздухообмена определяется расход каждой из вентиляционных систем. Для нашего примера получим:
- Расход системы П1 — 1220 м3/ч
- Расход системы В1 — 1020 м3/ч
- Расход системы В2 — 200 м3/ч
Далее под эти расходы воздуха выполняется подбор всех элементов системы вентиляции.
Аэродинамические параметры вентиляторов
Применение графика аэродинамических характеристик является обязательным и индивидуальным условием при выборе системы вентиляции. Рабочая точка на таком графике, будет означать КПД и частоту вращения рабочего колеса механизма. Определить ее можно с помощью давления и расхода воздуха. Предпочтение отдается вентилятору имеющему наибольший показатель КПД при заданном значении давлении и расходе воздуха, во время сравнение положения рабочей точки.
Как рассчитать нужную мощность для привода вентилятора?
Нужная мощность для привода вентилятора напрямую связана с давлением Нв(Па), которое им создается, объемом перемещаемого воздуха Qв, а также КПД. Формула для расчета будет следующей: Nв=Hв·Qв/1000·кпд (кВт); Нв=2200 Па; Qв=6000/3600=1,67 м³/сек.
Как рассчитать мощность электродвигателя для привода вентилятора?
Вид передачи мощности электродвигателя с вала двигателя на вал вентилятора параметр от которого и зависит мощность электродвигателя. Принято учитывать его в расчете соответствующим коэффициентом (kпер). Отсутствие потерь мощности при посадке рабочего колеса вентилятора на вал электродвигателя означают, что КПД данной передачи будет 1. Если для соединения валов вентилятора и электродвигателя применять муфту, то КПД в таком случае будет 0,98. Чтобы получить нужную частоту вращения рабочего колеса вентилятора используем клиноременную передачу и тогда КПД будет равнять 0,95
Потери в подшипниках принимаются во внимание коэффициентом 0,98. По формуле применяемой для расчета мощности электродвигателя: Nэл=Nв / kпер·kп
Полученную мощность учитывают с коэффициентом запаса. Если мощность меньше 5 кВТ,то он будет равен 1,15. При мощности более 5 кВТ кз равен 1,1. Итак, рассчитав нужные параметры, можно установить какой же вентилятор Вам потребуется. В процессе выбора, Вы можете задать любые интересующие Вас вопросы нашим менеджерам. Для ознакомления с ассортиментом и ценами воспользуйтесь нашим сайтом.
Источник