Онлайн калькулятор расчета буронабивных свайно-ростверковых и столбчатых фундаментов
Содержание:
- Особенности применения различных видов свай
- Основные схемы размещения
- Как рекомендуют применять сваи
- 6.3 Расчет буронабивных свай
- Факторы, влияющие на длину опор
- Как правильно рассчитать шаг
- Общая информация о свайных работах
- Расчет длины и диаметра свай
- Прочность трубы на сжатие
- Влияние толщины снежного покрова
- Свайный фундамент. Расчет количества свай | Город свай
- Расчет сваи
- Пример расчета несущей способности свайного отдельно стоящего фундамента
- С чего начать расчет?
- Как найти нагрузку на основание
- Оптимальное расстояние
- Заключение
Особенности применения различных видов свай
Для обустройства фундамента частного дома на нестабильных грунтах, как правило, применяются следующие 3 разновидности свай:
- Винтовые
- Забивные
- Буронабивные
Рассмотрим детально особенности эксплуатации и несущих характеристик в каждом случае.
Винтовые
Так как в основе конструкции винтовой сваи лежит стальная труба с лопастями в нижней части (диаметром 89, 108 и 130 мм), основной сферой применения ее являются сооружения с малой нагрузкой (дома из тонкого бруса, ячеистых бетонов или созданные по каркасной технологии), при этом на степень ее несущей способности влияние оказывают в первую очередь такие характеристики, как:
- Диаметр основной трубы.
- Протяженность заглубляемой в грунт части.
- Диаметр лопастей.
Основные схемы размещения
Существует несколько разновидностей схем расположения свай:
- Свайное поле.
- Свайный куст.
- Свайная полоса.
Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.
Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.
Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.
При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.
Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей
Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени
Как рекомендуют применять сваи
СП четко регламентирует использование свайного фундамента при строительстве малоэтажных зданий, к категории которых относятся приусадебные дома. Эти рекомендации следует учитывать если:
- при расчетной нагрузке на уровне ростверка до 150 кН/м (15тсм);
- для сваи-колонны нагрузка не должна превышать 400 кН (40тс).
Для таких строений рекомендуют следующие виды свай:
- короткие пирамидальные, армированные продольными, напряженными стержнями (без поперечного армирования);
- забивные призматические, с сечением не менее 200×200 мм;
- буровые: диаметр 300-600 мм, длина до 3 м;
- набивные: диаметр 300-600 мм, длина до 3 м;
- буроинъекционные: диаметр 150-350 мм;
- трубчатые из металла: диаметр 150-325 мм, заполняются бетоном;
На изображении 1 представлены призматические забивные сваи, которые подойдут для частного домостроения, так как их изготавливают длиной от 3 до 14 м и поперечным сечением от 20×20 см до 40×40 см.
На изображении 2 представлена свая пирамидальная короткая. Их изготавливают длиной в диапазоне 1,5-6,0 м. В верхней части размеры составляют 70×70 см или 80×80 см, в нижней части 10×10 см. При бурении используют глинистый раствор.
Виды винтовых свай для различного грунта.
На изображении 3 представлен процесс изготовления буронабивной сваи с использованием глинистого раствора:
- делают глинистый раствор, под который бурят скважину;
- устанавливают каркас;
- опускают трубу для заливки бетона (сверху вибробункер);
- заливают бетон с одновременным удалением глинистого раствора.
Разновидностью буронабивной является буроинъекционная свая. Они имеют значительно меньший диаметр и применяют их для усиления уже готового свайного фундамента.
На изображении 4 показана металлическая трубчатая свая. Это, пожалуй, наиболее подходящий вариант для заливки фундамента собственными руками.
6.3 Расчет буронабивных свай
6.3.1 Расчеты свайных фундаментов и их элементов выполняются в соответствии с общими положениями СП 24.13330.2011, МГСН 2.07-01 [], МГСН 5.02-99 [].
6.3.2 При расчете буронабивных свай из виброштампованного бетона по прочности материала расчетное сопротивление бетона следует принимать с учетом коэффициента условий работы γcb= 1 и коэффициента условий работы, учитывающего влияние способа производства работ при наличии в скважине воды и извлекаемых обсадных труб, γ’cb= 0,9.
6.3.3 Сваю в составе фундамента и одиночную по несущей способности грунта основания следует рассчитывать исходя из условия
(1)
где N — расчетная вертикальная нагрузка, передаваемая на сваю, кН;
Fd — несущая способность (предельное сопротивление) грунта основания одиночной сваи, кН, называемая в дальнейшем несущей способностью сваи;
γ, γn, γk — коэффициенты, принимаемые согласно п. 7.1.11 СП 24.13330.2011.
6.3.4 Несущую способность Fd буронабивной сваи, работающей на сжимающую нагрузку, следует определять по формулам:
а) при объемном виброштамповании укладываемой бетонной смеси
Fd = γc(γcRRA + UΣγcffihi), (2)
где γс — коэффициент условий работы сваи, γc = 1;
γcR — коэффициент условий работы грунта под нижним концом сваи (для песков и супесей γcR = 1,1; для глин и суглинков γcR = 1; в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011);
R — расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое, согласно п. 7.2.7 СП 24.13330.2011;
А — площадь опирания сваи, м2, принимаемая равной:
— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;
— для буронабивных свай с уширением — площади поперечного сечения уширения в месте наибольшего его диаметра;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на боковой поверхности сваи (для любого типа грунта γcf = 0,9);
fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;
hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;
б) при вибровтрамбовывании щебня в грунт ниже забоя скважины или сваи-оболочки, погружаемой с выемкой грунта
Fd = γc(γcR1RA + UΣγcffihi), (3)
где γс — коэффициент условий работы сваи, γс = 1;
γcR1 — коэффициент условий работы, учитывающий особенности совместной работы щебеночного «ядра» в основании сваи и окружающего уплотненного грунта, принимаемый по таблице ;
R — расчетное сопротивление уплотненного грунта под подошвой буронабивных свай, сооружаемых с вибровтрамбовыванием жесткого материала в забой, кПа, принимаемое по таблице приложения ;
А — площадь опирания сваи, м2, принимаемая равной:
— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;
— для свай-оболочек, заполняемых бетоном, — площади поперечного сечения оболочки брутто;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на боковой поверхности сваи, принимаемый:
— при объемном виброштамповании укладываемой бетонной смеси (для любого типа грунта γсf = 0,9);
— в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011 в зависимости от способа образования скважины и условий бетонирования;
fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;
hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м.
Таблица 1 — Значения коэффициента γcR1
Значение коэффициента для пылевато-глинистых грунтов с показателем текучести IL |
|||||||
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,6 |
||
для песчаных грунтов |
|||||||
гравелистых |
крупных |
— |
средней крупности |
мелких |
пылеватых |
— |
|
Пески средней плотности |
— |
— |
— |
0,8 |
1,0 |
1,1 |
— |
Супеси, суглинки и глины |
— |
— |
0,8 |
0,9 |
1,0 |
1,1 |
1,2 |
Примечания
1 Для промежуточных значений IL значения коэффициента γcR1 определяются интерполяцией.
2 Для гравелистых, крупных песчаных и пылевато-глинистых грунтов с показателем текучести IL < 0,2 определение сопротивлений производится по результатам опытных работ. Для предварительной оценки сопротивления основания под нижним концом сваи по формуле () допускаются принимать γcR1 = 0,5.
6.3.5 При определении несущей способности буросекущихся и бурокасательных свай, воспринимающих сжимающую нагрузку в составе конструкций типа «стена в грунте», следует учитывать уменьшение трения грунта на боковой поверхности сваи, вызванное объединением сечений соседних свай в ряду.
Факторы, влияющие на длину опор
От правильного определения длины свай зависит крепость будущей конструкции, и если эти важные элементы фундамента окажутся короткими, дом может просесть под своей тяжестью после его введения в эксплуатацию. Длина свай определяется с учетом анализа грунта и ландшафта, а именно:
- Плотность почвы.
- Перепад высоты между разными точками участка.
Плотность грунта
Глубина погружения опоры
Анализ грунта лучше всего проводить на основании геологических исследований местности. Если исследования характеристики грунтов не проводились на данной территории, то можно воспользоваться упрощенным методом выяснения его плотности.
Итак, нужно выкопать неглубокую канаву (до 1 м) в нижней точке участка. Если на такой глубине залегания вы увидите глинистую массу или песок, то выбор лучше сделать в пользу свай, длина которых достигает 2,5 м. В том случае если вы обнаружите породы с низкой плотностью (торф), плывун или грунтовые воды, придется продолжить углубление до тех пор, пока не дойдете до твердых пород. Здесь устанавливаются сваи, длина которых равна длине бура.
Перед вами таблица плотности и несущей способности различных почв.
Вид грунта | Плотный грунт | Грунт средней плотности |
---|---|---|
Песок (крупная фракция) | 6 | 5 |
Песок (средняя фракция) | 5 | 4 |
Супесь (в сухом виде) | 3 | 2.5 |
Супесь пластичная (влажная) | 2.5 | 2 |
Песок (мелкая фракция) | 4 | 3 |
Песок влажный (мелкая фракция) | 3 | 2 |
Глина | 6 | 2.5 |
Глина влажная | 4 | 1 |
Суглинок | 3 | 2 |
Суглинок влажный | 3 | 1 |
Как правильно рассчитать шаг
Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.
Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.
Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.
Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.
В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.
ВАЖНО!
В любом случае, необходимо соблюдать минимальные расстояния между соседними опорами, чтобы не снизить удельное сопротивление грунта. В противном случае несущая способность фундамента в данных точках окажется значительно ниже расчетной, что приведет к деформациям или разрушению ростверка и стен постройки.
Общая информация о свайных работах
Нормативная база, регулирующая процесс постройки свайных фундаментов, включает в себя два основополагающих документа:
- Во-первых – СНиП – 85 «Фундаменты свайного типа», который является основным при проведении практически любых работ, подразумевающих заглубление в грунт капитальных массивных опор.
- Во-вторых – СНиП «Фундаменты, основания и земляные сооружения». Положения данного норматива частично дублируют информацию, изложенную в предыдущем, но при этом их изучение тоже является желательным.
Все работы, связанные с подготовкой и возведением капитальных оснований, должны производиться исключительно в соответствии с данными СНиПами.
Техника на участке Техника на участке
Ключевым документом, описывающим процесс обустройства фундамента, является, проект производства работы.
В проекте приводится следующая информация:
- Календарный план, определяющий сроки выполнения каждой операции.
- Генеральный план с чертежами планируемого основания и привязками к результатам геодезической съемки.
- Спецификацию оборудования и устройств, необходимых для забивки свай или заглубления их иным способом. К примеру, СНиП на буронабивные сваи требует обязательного внесения в проект данных в отношении пробуриваемых скважин, армирования и состава бетонного заполнения.
Расчет длины и диаметра свай
Для проведения расчетов необходимо опираться на следующие данные инженерных изысканий:
- особенности грунта на площадке под застройку;
- гидрогеологические данные.
Данные параметры позволят определить геометрию свай, а также их конструкцию. Для упрощения расчетов принимают сваю за жестко закрепленный в земле стержень. Его положение от подошвы для крепления ростверка определяется расстоянием L1, которое можно вычислить по формуле:
где Lо – длина части сваи от уровня грунта до подошвы высокого ростверка;
аs – коэффициент деформации, который можно взять из соответствующих справочников, либо из СП 24.13330.2011.
Для буронабивных свай глубина погружения в скальный грунт, кроме сильно сжимаемого, определяется по формуле:
Прочность трубы на сжатие
Почему в качестве опор для строительства выбираются металлоконструкции в виде трубы? Она имеет замкнутый контур, что придает опоре повышенную жесткость по сравнению с открытыми контурами швеллера или уголка. При равной массе металла конструкция трубы жестче, следовательно, расходы на трубные опоры оказываются ниже.
Существуют методики определения жесткости тех или иных труб, позволяющие выбрать их в качестве опор свайного фундамента.
В результате расчетов оптимальными для возведения фундаментов признаны трубы, выполненные из конструкционных марок стали, диаметром от 73 до 300 мм, с толщиной стенки от 4 мм для самых мелких труб. Чаще всего берутся рядовые трубы со сталью 20, как наиболее распространенные на рынке.
Большое значение имеет замкнутость и надежность контура трубы
Важно отметить, что для свай рекомендовано использовать только бесшовные трубы
Влияние толщины снежного покрова
Согласно СНиП, значение глубины промерзания также зависит от толщины снежного слоя, который лежит зимой на данном грунте. График такой зависимости хорошо иллюстрирован на нижеприведенном графике.
График зависимости промерзания грунта от толщины снежного покрова
Это обстоятельство идет логически вразрез с общепринятой процедурой очистки участка вокруг дома от снежных сугробов. Люди, стремясь навести порядок, сами того не осознавая, создают на своем участке зону неравномерного промерзания почвы. Это может повредить фундамент, земля под которым может сильно промерзнуть и начать деформировать основание.
При дополнительном утеплении ленточного мелкозаглубленного фундамента ему не страшны морозные деформации
Для того, чтобы создать дополнительное утепление фундамента, как совет, поможет высадка невысокого кустарника вокруг дома по периметру, который сможет собирать на себя снежный вал и будет защищать ваш фундамент от холода.
Калькулятор ГПГ-Онлайн v.1.0
Калькулятор по расчету нормативной и расчетной глубины промерзания грунта для регионов РФ, Украины, Белоруссии и др. Два поиска: быстрый (по названию города) и расширенный. Пояснения и рабочие формулы можно найти под калькулятором.
Нормативная глубина промерзания (СП 131.13330.2012)
Город | Грунт | Глубина промерзания, м |
— | Глина или суглинок | |
Супесь, песков пылеватый или мелкий | ||
Песок средней крупности, крупный или гравелистый | ||
Крупнообломочные грунты |
Нормативная глубина сезонного промерзания грунта
Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.
Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле:
где Mt — безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства — по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;
d0 — величина, принимаемая равной, м, для: суглинков и глин — 0,23; супесей, песков мелких и пылеватых — 0,28; песков гравелистых, крупных и средней крупности — 0,30; крупнообломочных грунтов — 0,34.
Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.
Расчетная глубина сезонного промерзания грунта
Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле:
где dfn — нормативная глубина промерзания, определяемая;
kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений — по табл.1; для наружных и внутренних фундаментов неотапливаемых сооружений kh = 1,1, кроме районов с отрицательной среднегодовой температурой.
П р и м е ч а н и я
- В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СП 25.13330. Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).
- Для зданий с нерегулярным отоплением при определении kh за расчетную температуру воздуха принимают ее среднесуточное значение с учетом длительности отапливаемого и неотапливаемого периодов в течение суток.
Свайный фундамент. Расчет количества свай | Город свай
Для расчёта необходимого количества свай для свайного фундамента можно воспользоваться онлайн-калькуляторами, которые предлагает вездесущий интернет.
Но, как ученик в школе, привыкший пользоваться арифметическим калькулятором. Зачастую даже не знает таблицы умножения, так и строитель, использующий онлайн-калькулятор для расчёта количества свай, не будет знать откуда берутся результаты расчёта.
Основная функция любого фундамента – это принятие на себя всех нагрузок от конструкций здания – стен, перегородок, перекрытий потолка, крыши и пола. По сути, фундамент «удерживает» вес всего здания вместе с дополнительными нагрузками, например, весом снега, который накопился на крыше или весом камина, расположенном на втором этаже здания.
Алгоритмы для расчета свайного фундамента
Итак, вначале рассчитаем нагрузку здания на ленточный фундамент, а потом по аналогии перейдём к расчёту свайного фундамента из винтовых свай.
Для примера берём кирпичный дом размером 6 на 6 метров, с внутренней опорной перегородкой, толщина стен – двойной кирпич — 0,4 м.
Длина стен дома будет равна 6*4 = 24 м, длина внутренней перегородки 6 м. Итого — 30 м.
Вес кирпичного дома с дополнительными нагрузками условно возьмём в 120 т (можно и вычислить вес здания, посчитав объём кирпича, раствора, штукатурки, вес потолочного перекрытия и крыши). Толщину фундамента примем такую же как и толщина стен — 0,4 м.
Тогда площадь основания фундамента будет равна: 30*0,4 = 1,2 м2.
Итак, на площадь 1,2 м2 давит здание весом 120 т или 120000 кг. Или 10,0 кг на 1 см2. Толщина фундамента, как правило, больше толщины стен (это видно по характерному выступу цоколя).
Если увеличим толщину фундамента по 10 см на внешнюю и внутреннюю сторону стены, то его площадь будет равна 30*0,6 =1,8 м2. В этом случае давление здания на фундамент составит 120 000/18 000 = 6,7 кг/см2.
Это давление превышает величину сопротивления грунта, для глины он равен 6,0 кг/см2. Поэтому необходимо ещё увеличивать толщину фундамента.
Сколько нужно винтовых свай на здание размером 6х6 м
Принимаем величину 6,0 кг/см2 давления, как нормативную, при расчёте количества фундаментных винтовых свай на здание весом М =120000 кг. При этом добавим в расчеты: сопротивление грунта Кг – 6,0 кг/см2; коэффициент условий эксплуатации Ку – 1,0 и коэффициент надёжности Кн – 1,2 (что означает увеличение расчётов на 20% для повышения степени надёжности конструкции фундамента).
Диаметр сваи 0,3 м, Тогда площадь основания сваи составит:
S=πr2=3,14 * 0,15*0,15 = 0,07м2.
Площадь основания фундамента рассчитаем с учётом коэффициентов по формуле:S=Кн*М/ Ку*Кг = 1,2*120 000/ 1*6 = 24 000 см2 = 2,4 м2
Количество свай, если не считать сопротивление их стенок о грунт: 2,4/0,07 = 30,4 = 31 свая. Если увеличим диаметр сваи до 0,5 м, то тогда необходимо будет 2,4/0,197 = 17,9 = 12,18 = 13 свай.
Сколько нужно винтовых свай на баню 6х3?
Бани, как правило, возводят из деревянных срубов, поэтому их вес намного меньше, чем из кирпича. Оставим все коэффициенты такими, как в прошлом расчёте кроме веса бани, примерно определим его в 48 тонн или 48000 кг.
Диаметр сваи – 0,3 м.
Площадь основания фундамента бани:
S=Кн*М/ Ку*Кг = 1.2*48000/1*6 = 9600 см2 =0,96 м2
Площадь сечения сваи: S=πr2=3,14 * 0,15*0,15 =0,07
Количество свай: 0,96/0,07 = 13,7 =14 свай.
Есть иной алгоритм расчёта фундаментных свай, основанный на удельном сопротивления грунта. Проверим, совпадает ли количество необходимых винтовых свай на эту же баню.
На одну сваю придётся давление: 0,07*6 = 4200 кг.
Тогда количество свай на баню будет нужно 48000/4200 = 14 свай
Как видим, результаты как первого и так второго алгоритма одни и те же.
Сколько винтовых свай нужно на дом 6х9
Используем наиболее простой второй алгоритм расчёта при весе здания из кирпича размером 6х9, примерно 160000 кг, и диаметре свай 0,5 м.
Площадь сечения сваи: S=πr2= 3,14*0,25*0,25 =0,197 м2
На одну сваю приходится давления 0,197* 6 =11 820 кг.
Необходимо свай: 160 000/11 820 =13,5 =14 свай.
Расчёт количества свай для каркасного дома, как и любого другого, согласно, приведённых алгоритмов будет аналогично зависеть от веса дома, удельного сопротивления грунта на строительной площадке и диаметра винтовой сваи.
Расчет количества винтовых свай КСАмет
Свайные оголовки КСАмет выпускаются диаметром 20, 25 и 30 см. Поэтому расчёт количества свай будет зависеть, как и в прошлых примерах от веса дома, удельного сопротивления грунта и диаметра используемых свай. Единственное отличие при расчёте в том, что в технических характеристиках этих свай указаны максимальные допустимые нагрузки на сваю. Поэтому расчёт ведётся в соответствии с техническими характеристиками свай КСАмет.
Расчет сваи
На этом этапе вычислений необходимо определиться со следующими характеристиками:
- шаг свай;
- длина сваи до края ростверка;
- сечение.
Чаще всего размеры сечения определяют заранее, а остальные показатели подбирают исходя их имеющихся данных. Таким образом, результатом расчета должны стать расстояние между сваями и их длина.
Расположение арматуры
Всю массу здания, полученную на предыдущем этапе, требуется разделить на общую длину ростверка. При этом учитываются как наружные, так и внутренние стены. Результатом деления станет нагрузка на каждый пог.м фундаментов.
Несущую способность одного элемента фундамента можно найти по формуле: P = (0,7 • R • S) + (u • 0,8 • fin • li), где:
- P — нагрузка, которую без разрушения выдерживает одна свая;
- R — прочность почвы, которую можно найти по таблицам, представленным ниже после изучения состава грунта;
- S — площадь сечения сваи в нижней части, для круглой сваи формула выглядит следующим образом: S = 3,14*r2/2 (здесь r — это радиус окружности);
- u — периметр элемента фундамента, можно найти по формуле периметра окружности для круглого элемента;
- fin — сопротивление почвы по боковым сторонам элемента фундамента, см. таблицу для глинистых грунтов выше;
- li — толщина слоя грунта, соприкасающегося с боковой поверхностью сваи (находят для каждого слоя почвы отдельно);
- 0,7 и 0,8 — это коэффициенты.
Шаг фундаментов рассчитывается по более простой формуле: l = P/Q, где Q—это масса дома на пог.м фундамента, найденная ранее. Чтобы найти расстояние между буронабивными сваями в свету, из найденной величины просто вычитают ширину одного элемента фундамента.
При выполнении расчетов рекомендуется рассмотреть несколько вариантов с разными длинами элементов. После этого будет легко подобрать наиболее экономичный.
Армирование буронабивных свай выполняется в соответствии с нормативными документами. Арматурные каркасы состоят из рабочей арматуры и хомутов. Первая берет на себя изгибающие воздействия, а вторые обеспечивают совместную работу отдельных стержней.
Каркасы для буронабивных свай подбираются в зависимости от нагрузки и размеров сечения. Рабочая арматура устанавливается в вертикальном положении, для нее используют стальные стержни D от 10 до 16 мм. При этом выбирают материал класса А400 (с периодическим профилем). Для изготовления поперечных хомутов потребуется закупить гладкую арматуру класса А240. D = минимум 6-8 мм.
Сортамент стальной арматуры
Каркасы буронабивных свай устанавливаются так, чтобы металл не доходил за край бетона на 2-3 см. Это нужно для обеспечения защитного слоя, который предотвратить появление коррозии (ржавчины на арматуре).
Пример расчета несущей способности свайного отдельно стоящего фундамента
Рассчитать свайный фундамент под колонну промышленного здания на действие центральной нагрузки N
= 1,0 МН. Материал ростверка — бетон класса В25 с расчетным сопротивлением осевому растяжениюRbt = 1,05 МПа. Глубина заложения подошвы ростверка по конструктивным соображениям принята равнойh = 0,8 м. Грунтовые условия строительной площадки: 1 — песок пылеватый (γ1= 0,0185 МН/м 3 ,h1 = 3,6 м,E1 = 15 МПа); 2 — супесь пластичная (γ2= 0,0195 МН/м 3 ,h2 = 1,7 м;Е2 =17 МПа); 3 — песок плотный (γ3=0,0101 МН/м 3 ,h3 = 2,2 м,E3 = 32 МПа);4 — суглинок тугопластичный (γ4 =0.01 МН/м 3 ,h4 =3,4 м,E4 =30 МПа).L/H—5,1.Решение.
Для заданных грунтовых условий проектируем свайный фундамент из сборных железобетонных свай марки С5,5-30, длинойL = 5,5 м, размером поперечного сечения 0,3×0,3 м и длиной острияl = 0,25 м. Сваи погружают с помощью забивки дизель-молотом.
Найдем несущую способность одиночной висячей сваи, ориентируясь на расчетную схему, показанную на рис. 6.1, а
и имея в виду, что глубина заделки сваи в ростверк должна быть не менее 5 см.
Рис. VI.1
Площадь поперечного сечения сваи A
= 0,3·0,3 = 0,09 м 2 , периметр сваи
По табл. 1.18(Приложение I) при глубине погружения сваи 6,5 м для песка мелкого, интерполируя, найдем расчетное сопротивление грунта под нижним концом сваи R =
2,35МПа.
По табл. 1.18(Приложение I) для свай, погружаемых с помощью дизель-молотов, находим значение коэффициента условий работы грунта под нижним концом сваи γcR
=1,0 и по боковой поверхностиγcf =1,0.
Пласт первого слоя грунта, пронизываемого сваей, делим на два слоя толщиной 2 и 0,8 м. Затем для песка пылеватого при средних глубинах расположения слоев h1
= l,8 м иh2 = 3,2 м, интерполируя, находим расчетные сопротивления по боковой поверхности сваи, используя данные табл. 1.19(Приложение I):f1 = 0,0198 МПа,f2 = 0,0254 МПа.
Для третьего слоя грунта при средней глубине его залегания h3
= 4,45 м по этой же таблице для супеси пластичной с показателем текучестиIL = 0,6, интерполируя, находимf3 = 0,0165 МПа.
Для четвертого слоя при средней глубине его расположения h4
= 5,775 м для песка мелкого находимf4 = 0,041б МПа.
Несущую способность одиночной висячей сваи определим по формуле (6.4)
Ф=
1 =0,364 МН.
Расчетная нагрузка, допускаемая на сваю по грунту, составит:
F
= 0,364/1,4 = 0,26 МН.
В соответствии с конструктивными требованиями зададимся шагом свай, приняв его равным а = 3b
= 3·0,3 = 0,9 м. Далее определим требуемое число свай:
Окончательно примем число свай в фундаменте равным 4 и разместим их по углам ростверка.
Найдем толщину ростверка из условия (8.8):
По конструктивным требованиям высота ростверка должна быть не менее hp
= 0,05+ 0,25 = 0,3 м, что больше полученной в результате расчета на продавливание. Следовательно, окончательно примем высоту ростверка равной 0,3 м.
Расстояние от края ростверка до внешней стороны сваи в соответствии с конструктивными требованиями назначим равным lр
= = 0,3·30+5=14 см, примем его окончательно, кратным 5 см, т. е.lp = 15 см. Расстояние между сваями примем равным:l =3b = 0,9 м.
Конструкция ростверка и его основные размеры показаны на рис. VI.1, б.
Найдем вес ростверка G3
= 0,025·0,3·1,5·1,5 = 0,0169 МН и вес грунта, расположенного на ростверке,Gгр = 0,5·1,5·1,5 ·0,0185 = 0,0208 МН.
Определим нагрузку, приходящуюся на одну сваю, по формуле:
Найдем вес свай:
G1
= 4 (5,5·220·10 + 50·10) = 50800 H = 0,0508 МН.
Вес грунта в объеме АБВГ
(см. рис. 6.1):
Вес ростверка был найден ранее: G3
=0,0169 МН.
Давление под подошвой условного фундамента:
По табл. 1.12(Приложение I) для песка мелкого, на который опирается условный фундамент, с коэффициентом пористости е
= 0,598 найдем значение удельного сцеплениясп = 0,003 МПа.
По табл. 1.13(Приложение I) по углу внутреннего трения φn
= 34°, который был определен ранее, найдем значение безразмерных коэффициентов:Mγ =l,55,Mq =7,22 иМс =9,22.
Определим осредненный удельный вес грунтов, залегающих выше подошвы условного фундамента:
По табл. 1.15. (ПриложениеI) для песка мелкого, насыщенного водой, при соотношении L/H>4
находим значения коэффициентовγс1 = 1,3 иγс2 = 1,1.
По формуле (8.3) определим расчетное сопротивление грунта основания под подошвой условного фундамента:
Основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: Рср
= 0,276 МПа
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения:Учись учиться, не учась! 10546 – | 7960 – или читать все.
93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
С чего начать расчет?
Итак, вы уже знаете, какой дом будете возводить на вашем участке. Все, что вам нужно – последовательно пройти через ряд этапов, большая часть которых сводится к проведению аналитической работы:
- оценить характер грунта;
- просчитать нагрузку от здания;
- провести расчет площади фундамента, вернее – площади его подошвы;
- определиться с параметрами буронабивных свай и их количеством
Оцениваем качественные параметры грунта
В статье «Расчет фундамента» мы приводили достаточно полную информацию о том, как самостоятельно оценить показатели грунта, а также рассчитать требуемую площадь подошвы фундамента. Там же вы можете посмотреть примерный расчет буронабивного фундамента. Стоит учитывать условие, что буронабивное свайное основание не подходит для участков с высоким УГВ.
Рассчитываем нагрузку от дома
На данном этапе необходимо прикинуть примерную нагрузку от будущего сооружения. Как это сделать, описано в этой статье. По сути, требуется лишь просуммировать массу стройматериалов, которая пойдет на строительство надземной части дома – сделать это несложно, имея в своем распоряжении сводные таблицы со средними значениями удельной массы.
Расчет параметров и количества буронабивных свай
Очевидно, что от параметров опор, в том числе – от площади подошвы каждой сваи, зависит их требуемое количество. Порядок расчетов такой же, как и при расчете столбчатого фундамента. В конце статьи, на которую мы ссылаемся, приведен пример того, как определиться с количеством опор. Не забываем о том, что минимально допустимый шаг между сваями составляет 2 метра, и все опоры необходимо объединить в одну систему обвязкой железобетонным ростверком. Уже на этом этапе можно «на бумаге» провести достаточно точный расчет прочности фундамента – выдержит ли он воздействия, как со стороны здания, так и со стороны грунта?
Сколько бетона и арматуры потребуется на устройство буронабивного основания
На этапе, когда вы определились с количеством буронабивных свай, самое время определить требуемый объем бетонной смеси. О том, как это сделать, мы писали здесь – рекомендуем ознакомиться с этой тематической статьей. Не забываем и про арматуру для фундамента. При желании, вы можете самостоятельно приготовить бетонную смесь прямо на участке – так будет дешевле и, благо, буронабивное основание нетребовательно к срокам заливки: сваи можно заливать так, как вам удобно!
Как найти нагрузку на основание
Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:
- Стены дома.
- Перекрытия.
- Стропильная система и кровля.
- Наружная обшивка, утеплитель.
- Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
- Вес людей и животных.
- Снеговая и ветровая нагрузка.
Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.
Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.
Оптимальное расстояние
Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.
Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.
Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.
Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.
В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.
Поэтому общего оптимального значения расстояния между сваями нет и не может быть. Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.
Заключение
Чтобы грамотно провести расчет фундамента, инженеру требуются прикладные навыки и понимание технологии закладки свайного фундамента.
Требования к вычислениям подробно изложены в нормативных документах и отражают, кроме приведенных в статье формул, анализ рисков на осадку и деформации в зависимости от типа почвы и модели основания, а также другие нюансы строительства.
Самостоятельно заниматься инженерными расчетами допускается в том случае, если планируется возведение легковесной постройки, либо сооружения II или III степеней ответственности. В противном случае стоит проектирование свайного фундамента доверить профессиональной компании, которая имеет для этого все лицензии.