Устройство плавного пуска
Содержание:
Выбираем схему
Существует множество схем плавного пуска, постараемся подобрать что-нибудь подходящее и наиболее доступное для нас.
На дискретных элементах
Регулятор, схема которого представлена ниже, собран на симметричном тиристоре (симисторе) КУ208Г и позволяет осуществлять плавный пуск электроинструмента мощностью до 2 кВт.
Схема плавного пуска на симисторе
Сразу после подачи напряжения на схему (тумблер SA1) Конденсатор С1 разряжен, симистор VS1 закрыт и двигатель М не вращается. Далее конденсатор постепенно заряжается через диод VD1 и резистор R2, симистор начинает открываться, но с большой задержкой от начала полуволны сетевого напряжения. На мотор поступает небольшое начальное напряжение, и он запускается на минимальных оборотах.
По мере зарядки конденсатора задержка открывания симистора уменьшается, напряжение на моторе увеличивается, а значит, увеличиваются и обороты. Как только конденсатор зарядится полностью, симметричный тиристор будет открываться в начале каждой полуволны, подавая на двигатель полное сетевое напряжение, и последний выйдет на полные обороты.
Время плавного включения можно регулировать, подбирая емкость конденсатора С1. При указанных номиналах (500 мкФ) инструмент выйдет на рабочий режим примерно через 2-3 сек после включения.
На микросхеме и симисторе
Эта схема собрана на отечественной универсальной микросхеме КР1182ПМ1. С ее помощью можно построить как устройство плавного пуска, так и регулятор напряжения. На схеме, приведенной ниже, микросхема включена в режиме плавного пуска.
Схема плавного пуска на ИМС КР1182ПМ1
Поскольку микросхема имеет относительно малую выходную мощность – до 150 Вт, – то оснащена мощным выходным ключом, в роли которого выступает симметричный тиристор ТС122-20-10, выдерживающий ток до 20 А. Время выхода двигателя на рабочий режим зависит от емкости конденсатора С1. Такая схема сможет работать без радиатора при мощности нагрузки до 1 кВт.
Интегральный регулятор
Схема на дискретных элементах достаточно проста и не содержит дефицитных элементов, но она слишком громоздка и ее придется поместить в отдельный корпус, особенно если электроинструмент мощный и потребуется радиатор. В этом плане намного удобнее использовать готовые интегральные блоки плавного пуска. Самый удобный для нас вариант – KRRQD20A.
Блок плавного пуска KRRQD20A
Компактный интегральный блок плавного пуска (БПП) рассчитан на ток до 20 А и способен коммутировать мощность до 4 кВт. Модуль имеет 2 вывода и включается в разрыв одного из питающих проводов двигателя инструмента. Если оснастить им удлинитель (многие почему то называют его переноской), то электроинструмент, подключенный через него, будет плавно запускаться при нажатии на кнопку включения.
Схема подключения модуля KRRQD20A к удлинителю
На фото хорошо видно, что модуль предназначен для установки на радиатор, но если мощность электроинструмента не превышает 1 кВт, то радиатор не потребуется.
Блок плавного пуска XS-12/D3
Схема подключения нанесена прямо на корпусе прибора и очевидно, что его можно использовать, только установив после выключателя в сам электроинструмент. Тоже неплохой вариант, но, во-первых, удлинитель более универсальное решение (можно подключать любой инструмент или даже лампу), а, во-вторых, разбирая инструмент, мы лишаемся гарантийного обслуживания.
Самодельные варианты
Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.
Простейшая схема
УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.
Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.
Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).
Плавный пуск на микросхеме
Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.
Схема 2. Схема плавного пуска электроинструмента
Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.
При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.
Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.
Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.
Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.
Варианты систем плавного пуска электродвигателей
Система «звезда-треугольник»
Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.
Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.
Электронная система плавного пуска электродвигателя
Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.
С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.
В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:
- основная – понижение пускового тока до трёх–четырёх номинальных;
- снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
- улучшение параметров пуска и торможения;
- аварийная защита сети от перегрузок по току.
Однофазная схема пуска
Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;
Двухфазная схема пуска
Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;
Трехфазная схема пуска
Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций, таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.
Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя, после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.
Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.
Как заменить графитовые щетки
На основании практических данных установлено, что наиболее уязвимой частью в техническом устройстве, в том числе и в 1100Э, являются графитовые щетки. Их срок службы составляет не более 2 лет. Чтобы произвести замену старых щеток на новые, не нужно обладать опытом. Такая манипуляция не составит большого труда даже для неопытного человека. Для изучения состояния щеток нужно открыть корпус инструмента, в том числе 1100Э.
Если техническое устройство изготовлено специализированной фирмой, то щетки могут удерживаться с помощью пружины. Чтобы произвести извлечение щетки, нужно эти пружины прижать отверткой. Если же изготовителем инструмента является Китай, то в этих местах расположены заглушки, которые тоже убираются с помощью отвертки, и только после этого щетка легко снимается. Чтобы определить, какую щетку нужно приобрести, рекомендуется взять снятую деталь с собой в магазин и соответственно в нем подобрать аналогичную, четко по заданным параметрам. При вставке щетки в болгарку необходимо эти действия выполнять плавно, не спеша
Важно при этом обратить внимание, что она ни за что не цепляется и ровно устанавливается в гнездо
По образу и подобию установки первой щетки, можно поставить и вторую. После этого необходимо проверить расположение проводов в техническом устройстве, чтобы они нигде не пережимались. Теперь корпус можно закрыть и включить машинку в тестовом режиме.
Как подключить электроинструмент? Такой вопрос очень часто возникает при ремонте электроинструмента когда нет электрической схемы, прибор частично или полностью разобран, разукомплектован и вдобавок подвергался неоднократному, неумелому ремонту.
Провода торчат в разные стороны, некоторые из них соединены между собой, концы других оголены. Казалось бы, что в этом хаосе, в котором нет никакой логики, невозможно разобраться.
На самом деле, правильно и без проблем подключить можно любой электромотор, даже не зная схемы. Нужно только знать его тип, особенности конструкции и хотя бы основы теории.
Покажу это на примере подключения фрезера Macita3612C.
Кажется, что в этом хаосе проводов без схемы невозможно разобраться, но поверьте, это не так. Более того, без некоторых проводов можно обойтись, а некоторые просто не нужны.
Иногда, при ремонте или восстановлении работоспособности электроинструмента возникает необходимость подключить устройство к сети при этом сохранив весь тот функционал каким, электроинструмент обладал изначально, но из корпуса только торчат провода, причём довольно много (в моём случае 6), а электрической схемы нигде не удается найти. Что делать? На самом деле, всё не так страшно и сложно.
Отличительный признак коллекторного электродвигателя коллекторный узел.
Вовсе не обязательно знать что и как было сделано изначально. Для того чтобы подключить электромотор инструмента нужно сделать следующее:
- Найти питающую цепь.
- При необходимости подключить конденсаторы.
- Подключить коммутирующее устройство.
Методика нахождения проводов питания
В ручном электроинструменте любого предназначения, как правило, используется универсальный коллекторный электродвигатель (УКД). Универсальность эта весьма условна и означает только то что двигатель теоретически может работать от постоянного и от переменного тока. На практике при ремонте, эту особенность не применишь, важнее знать принципиальную схемы УКД. Взглянув на которую можно сделать важный практический вывод.
Один из пучка входящих в корпус двигателя проводов непременно должен быть подключён к одной из обмоток статора, а через неё к контактной площадке щётки.
Как сделать плавный пуск и регулятор оборотов для болгарки
Все бюджетные варианты УШМ имеют несколько недостатков. Во-первых, не имеется системы плавного пуска. Это очень важная опция. Наверняка все из вас включали этот мощный электроинструмент в сеть, и при запуске наблюдали, как падает накал лампочки, которая также подключена к этой сети.
Такое явление происходит по той причине, что мощные электродвигатели в момент запуска потребляют огромные токи, из-за которых проседает напряжение сети. Это может вывести из строя сам инструмент, особенно китайского производства с ненадежными обмотками, которые могут в один прекрасный день сгореть во время пуска.
То есть система мягкого старта защитит и сеть, и инструмент. К тому же в момент запуска инструмента происходит мощная отдача или толчок, а в случае внедрения системы мягкого старта такого, разумеется, не будет.
Во-вторых, отсутствует регулятор оборотов, который позволит долго работать инструментом, не нагружая его.
Схема, представленная ниже, от промышленного образца:
Она внедряется производителем в дорогие приборы.
К схеме можно подключать не только «болгарку», но и, в принципе, любые приборы – дрель, фрезерные и токарные станки. Но с учетом того, что в инструменте должен стоять именно коллекторный двигатель.
С асинхронными двигателями такое не пройдет. Там необходим частотный преобразователь.
Итак, необходимо сделать печатную плату и приступить к сборке.
В качестве регулирующего элемента задействован сдвоенный операционный усилитель LM358, который с помощью транзистора VT1 управляет силовым симистором.
Итак, силовым звеном в этой схеме является мощный симистор типа BTA20-600.
Такого симистора не оказалось в магазине и пришлось купить BTA28. Он чуть мощнее того, что по схеме. В общем, для двигателей с мощностью до 1 кВт можно использовать любой симистор с напряжением не ниже 600 В и током от 10-12 А. Но лучше иметь некоторый запас и взять симисторы на 20 А, все равно они стоят копейки.
Во время работы симистор будет греться, поэтому на него необходимо установить теплоотвод.
Чтобы не было вопросов по поводу того, что двигатель при пуске может потреблять токи, которые значительно превышают максимальный ток симистора, и последний может попросту сгореть, помните, что схема имеет мягкий старт, и пусковые токи можно не принимать во внимание. Наверняка всем знакомо явление самоиндукции
Этот эффект наблюдается при размыкании цепи, к которой подключена индуктивная нагрузка
Наверняка всем знакомо явление самоиндукции. Этот эффект наблюдается при размыкании цепи, к которой подключена индуктивная нагрузка.
То же самое и в этой схеме. Когда резко прекращается подача питания на двигатель, ток самоиндукции с него может спалить симистор. А снабберная цепь гасит самоиндукцию.
Резистор в этой цепи имеет сопротивление от 47 до 68 Ом, а мощность от 1 до 2 Вт. Конденсатор пленочный на 400 В. В данном варианте самоиндукция как побочный эффект.
Резистор R2 обеспечивает токогашение для низковольтной цепи управления.
Сама схема в какой-то мере является и нагрузкой, и стабилизирующим звеном. Благодаря этому после резистора можно не стабилизировать питание. Хотя в сети есть такие же схемы с дополнительным стабилитроном, использовать его бессмысленно, поскольку напряжение на выводах питания операционного усилителя в пределах нормы.
Возможные варианты замен для маломощных транзисторов можно увидеть на следующей картинке:
Печатная плата, которая упоминалась ранее, представляет собой только плату для устройства плавного пуска, и в ней нет компонентов для регулировки оборотов. Это сделано специально, поскольку в любом случае регулятор нужно выводить с помощью проводов.
Настройка регулятора выполняется с помощью многооборотного подстроечного резистора на 100 кОм.
А основная регулировка уже с помощью резистора R5. Стоит сказать, что схема такого рода не позволит осуществлять регулировку от нуля, только от 30 до 100%.
Если нужен более мощный регулятор, то его можно собрать по следующей схеме:
Эта схема позволяет регулировать мощность практически от нуля, но для «болгарки» это не имеет смысла.
Вначале схема обязательно проверяется на работоспособность путем подключения в качестве нагрузки лампочки на 40-60 Вт 220 В.
Если все в порядке, то после отключения от сети сразу же нужно проверить симистор на ощупь – он должен быть холодным.
Далее, плата подключается к «болгарке» и производится запуск.
Если все работает нормально – «болгарка» запускается плавно, и регулируются обороты, — то пора приступать к тестам под нагрузкой.
Прикрепленные файлы:
Самодельные варианты
Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.
Простейшая схема
УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.
Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.
Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).
Плавный пуск на микросхеме
Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.
Схема 2. Схема плавного пуска электроинструмента
Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.
При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.
Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.
Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.
Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.